mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* transformers-cli -> transformers * Chat command works with positional argument * update doc references to transformers-cli * doc headers * deepspeed --------- Co-authored-by: Joao Gante <joao@huggingface.co>
207 lines
8.6 KiB
Markdown
207 lines
8.6 KiB
Markdown
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
|
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
|
">
|
|
</div>
|
|
</div>
|
|
|
|
# T5
|
|
|
|
[T5](https://huggingface.co/papers/1910.10683) is a encoder-decoder transformer available in a range of sizes from 60M to 11B parameters. It is designed to handle a wide range of NLP tasks by treating them all as text-to-text problems. This eliminates the need for task-specific architectures because T5 converts every NLP task into a text generation task.
|
|
|
|
To formulate every task as text generation, each task is prepended with a task-specific prefix (e.g., translate English to German: ..., summarize: ...). This enables T5 to handle tasks like translation, summarization, question answering, and more.
|
|
|
|
You can find all official T5 checkpoints under the [T5](https://huggingface.co/collections/google/t5-release-65005e7c520f8d7b4d037918) collection.
|
|
|
|
> [!TIP]
|
|
> Click on the T5 models in the right sidebar for more examples of how to apply T5 to different language tasks.
|
|
|
|
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and how to translate with T5 from the command line.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
pipeline = pipeline(
|
|
task="text2text-generation",
|
|
model="google-t5/t5-base",
|
|
torch_dtype=torch.float16,
|
|
device=0
|
|
)
|
|
pipeline("translate English to French: The weather is nice today.")
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"google-t5/t5-base"
|
|
)
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
"google-t5/t5-base",
|
|
torch_dtype=torch.float16,
|
|
device_map="auto"
|
|
)
|
|
|
|
input_ids = tokenizer("translate English to French: The weather is nice today.", return_tensors="pt").to("cuda")
|
|
|
|
output = model.generate(**input_ids, cache_implementation="static")
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="transformers CLI">
|
|
|
|
```bash
|
|
echo -e "translate English to French: The weather is nice today." | transformers run --task text2text-generation --model google-t5/t5-base --device 0
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
|
|
|
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
|
|
|
```py
|
|
# pip install torchao
|
|
import torch
|
|
from transformers import TorchAoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
|
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
"google/t5-v1_1-xl",
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
quantization_config=quantization_config
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/t5-v1_1-xl")
|
|
input_ids = tokenizer("translate English to French: The weather is nice today.", return_tensors="pt").to("cuda")
|
|
|
|
output = model.generate(**input_ids, cache_implementation="static")
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
```
|
|
|
|
## Notes
|
|
|
|
- You can pad the encoder inputs on the left or right because T5 uses relative scalar embeddings.
|
|
- T5 models need a slightly higher learning rate than the default used in [`Trainer`]. Typically, values of `1e-4` and `3e-4` work well for most tasks.
|
|
|
|
## T5Config
|
|
|
|
[[autodoc]] T5Config
|
|
|
|
## T5Tokenizer
|
|
|
|
[[autodoc]] T5Tokenizer
|
|
- build_inputs_with_special_tokens
|
|
- get_special_tokens_mask
|
|
- create_token_type_ids_from_sequences
|
|
- save_vocabulary
|
|
|
|
## T5TokenizerFast
|
|
|
|
[[autodoc]] T5TokenizerFast
|
|
|
|
<frameworkcontent>
|
|
<pt>
|
|
|
|
## T5Model
|
|
|
|
[[autodoc]] T5Model
|
|
- forward
|
|
|
|
## T5ForConditionalGeneration
|
|
|
|
[[autodoc]] T5ForConditionalGeneration
|
|
- forward
|
|
|
|
## T5EncoderModel
|
|
|
|
[[autodoc]] T5EncoderModel
|
|
- forward
|
|
|
|
## T5ForSequenceClassification
|
|
|
|
[[autodoc]] T5ForSequenceClassification
|
|
- forward
|
|
|
|
## T5ForTokenClassification
|
|
|
|
[[autodoc]] T5ForTokenClassification
|
|
- forward
|
|
|
|
## T5ForQuestionAnswering
|
|
|
|
[[autodoc]] T5ForQuestionAnswering
|
|
- forward
|
|
|
|
</pt>
|
|
<tf>
|
|
|
|
## TFT5Model
|
|
|
|
[[autodoc]] TFT5Model
|
|
- call
|
|
|
|
## TFT5ForConditionalGeneration
|
|
|
|
[[autodoc]] TFT5ForConditionalGeneration
|
|
- call
|
|
|
|
## TFT5EncoderModel
|
|
|
|
[[autodoc]] TFT5EncoderModel
|
|
- call
|
|
|
|
</tf>
|
|
<jax>
|
|
|
|
## FlaxT5Model
|
|
|
|
[[autodoc]] FlaxT5Model
|
|
- __call__
|
|
- encode
|
|
- decode
|
|
|
|
## FlaxT5ForConditionalGeneration
|
|
|
|
[[autodoc]] FlaxT5ForConditionalGeneration
|
|
- __call__
|
|
- encode
|
|
- decode
|
|
|
|
## FlaxT5EncoderModel
|
|
|
|
[[autodoc]] FlaxT5EncoderModel
|
|
- __call__
|
|
|
|
</jax>
|
|
</frameworkcontent>
|