
* transformers-cli -> transformers * Chat command works with positional argument * update doc references to transformers-cli * doc headers * deepspeed --------- Co-authored-by: Joao Gante <joao@huggingface.co>
5.2 KiB
Phi
Phi is a 1.3B parameter transformer model optimized for Python code generation. It focuses on "textbook-quality" training data of code examples, exercises and synthetic Python problems rather than scaling the model size or compute.
You can find all the original Phi checkpoints under the Phi-1 collection.
Tip
Click on the Phi models in the right sidebar for more examples of how to apply Phi to different language tasks.
The example below demonstrates how to generate text with [Pipeline
], [AutoModel
] and from the command line.
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation", model="microsoft/phi-1.5", device=0, torch_dtype=torch.bfloat16)
pipeline("pipeline('''def print_prime(n): """ Print all primes between 1 and n"""''')")
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
input_ids = tokenizer('''def print_prime(n):
"""
Print all primes between 1 and n
"""''', return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
echo -e "'''def print_prime(n): """ Print all primes between 1 and n"""'''" | transformers run --task text-classification --model microsoft/phi-1.5 --device 0
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses bitsandbytes to only quantize the weights to 4-bits.
import torch
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa", quantization_config=bnb_config)
input_ids = tokenizer('''def print_prime(n):
"""
Print all primes between 1 and n
"""''', return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
Notes
-
If you're using Transformers < 4.37.0.dev, set
trust_remote_code=True
in [~AutoModel.from_pretrained
]. Otherwise, make sure you update Transformers to the latest stable version.import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1") model = AutoModelForCausalLM.from_pretrained( "microsoft/phi-1", torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, attn_implementation="sdpa") input_ids = tokenizer('''def print_prime(n): """ Print all primes between 1 and n """''', return_tensors="pt").to("cuda") output = model.generate(**input_ids, cache_implementation="static") print(tokenizer.decode(output[0], skip_special_tokens=True))
PhiConfig
autodoc PhiConfig
PhiModel
autodoc PhiModel - forward
PhiForCausalLM
autodoc PhiForCausalLM - forward - generate
PhiForSequenceClassification
autodoc PhiForSequenceClassification - forward
PhiForTokenClassification
autodoc PhiForTokenClassification - forward