mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* transformers-cli -> transformers * Chat command works with positional argument * update doc references to transformers-cli * doc headers * deepspeed --------- Co-authored-by: Joao Gante <joao@huggingface.co>
178 lines
9.7 KiB
Markdown
178 lines
9.7 KiB
Markdown
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
|
">
|
|
</div>
|
|
</div>
|
|
|
|
# Llama 2
|
|
|
|
[Llama 2](https://huggingface.co/papers/2307.09288) is a family of large language models, Llama 2 and Llama 2-Chat, available in 7B, 13B, and 70B parameters. The Llama 2 model mostly keeps the same architecture as [Llama](./llama), but it is pretrained on more tokens, doubles the context length, and uses grouped-query attention (GQA) in the 70B model to improve inference.
|
|
|
|
Llama 2-Chat is trained with supervised fine-tuning (SFT), and reinforcement learning with human feedback (RLHF) - rejection sampling and proximal policy optimization (PPO) - is applied to the fine-tuned model to align the chat model with human preferences.
|
|
|
|
You can find all the original Llama 2 checkpoints under the [Llama 2 Family](https://huggingface.co/collections/meta-llama/llama-2-family-661da1f90a9d678b6f55773b) collection.
|
|
|
|
> [!TIP]
|
|
> Click on the Llama 2 models in the right sidebar for more examples of how to apply Llama to different language tasks.
|
|
|
|
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and how to chat with Llama 2-Chat from the command line.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
pipeline = pipeline(
|
|
task="text-generation",
|
|
model="meta-llama/Llama-2-7b-hf",
|
|
torch_dtype=torch.float16,
|
|
device=0
|
|
)
|
|
pipeline("Plants create energy through a process known as")
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"meta-llama/Llama-2-7b-hf",
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-7b-hf",
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
attn_implementation="sdpa"
|
|
)
|
|
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
|
|
|
output = model.generate(**input_ids, cache_implementation="static")
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="transformers CLI">
|
|
|
|
```bash
|
|
transformers chat meta-llama/Llama-2-7b-chat-hf --torch_dtype auto --attn_implementation flash_attention_2
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
|
|
|
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
|
|
|
```py
|
|
# pip install torchao
|
|
import torch
|
|
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-2-13b-hf",
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
quantization_config=quantization_config
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-13b-hf")
|
|
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
|
|
|
output = model.generate(**input_ids, cache_implementation="static")
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
```
|
|
|
|
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
|
|
|
```py
|
|
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
|
|
|
visualizer = AttentionMaskVisualizer("meta-llama/Llama-2-7b-hf")
|
|
visualizer("Plants create energy through a process known as")
|
|
```
|
|
|
|
<div class="flex justify-center">
|
|
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llama-2-attn-mask.png"/>
|
|
</div>
|
|
|
|
## Notes
|
|
|
|
- Setting `config.pretraining_tp` to a value besides `1` activates a more accurate but slower computation of the linear layers. This matches the original logits better.
|
|
- The original model uses `pad_id = -1` to indicate a padding token. The Transformers implementation requires adding a padding token and resizing the token embedding accordingly.
|
|
|
|
```py
|
|
tokenizer.add_special_tokens({"pad_token":"<pad>"})
|
|
# update model config with padding token
|
|
model.config.pad_token_id
|
|
```
|
|
- It is recommended to initialize the `embed_tokens` layer with the following code to ensure encoding the padding token outputs zeros.
|
|
|
|
```py
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.config.padding_idx)
|
|
```
|
|
- The tokenizer is a byte-pair encoding model based on [SentencePiece](https://github.com/google/sentencepiece). During decoding, if the first token is the start of the word (for example, "Banana"), the tokenizer doesn't prepend the prefix space to the string.
|
|
- Don't use the `torch_dtype` parameter in [`~AutoModel.from_pretrained`] if you're using FlashAttention-2 because it only supports fp16 or bf16. You should use [Automatic Mixed Precision](https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html), set fp16 or bf16 to `True` if using [`Trainer`], or use [torch.autocast](https://pytorch.org/docs/stable/amp.html#torch.autocast).
|
|
|
|
## LlamaConfig
|
|
|
|
[[autodoc]] LlamaConfig
|
|
|
|
|
|
## LlamaTokenizer
|
|
|
|
[[autodoc]] LlamaTokenizer
|
|
- build_inputs_with_special_tokens
|
|
- get_special_tokens_mask
|
|
- create_token_type_ids_from_sequences
|
|
- save_vocabulary
|
|
|
|
## LlamaTokenizerFast
|
|
|
|
[[autodoc]] LlamaTokenizerFast
|
|
- build_inputs_with_special_tokens
|
|
- get_special_tokens_mask
|
|
- create_token_type_ids_from_sequences
|
|
- update_post_processor
|
|
- save_vocabulary
|
|
|
|
## LlamaModel
|
|
|
|
[[autodoc]] LlamaModel
|
|
- forward
|
|
|
|
|
|
## LlamaForCausalLM
|
|
|
|
[[autodoc]] LlamaForCausalLM
|
|
- forward
|
|
|
|
## LlamaForSequenceClassification
|
|
|
|
[[autodoc]] LlamaForSequenceClassification
|
|
- forward
|