mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* transformers-cli -> transformers * Chat command works with positional argument * update doc references to transformers-cli * doc headers * deepspeed --------- Co-authored-by: Joao Gante <joao@huggingface.co>
216 lines
8.7 KiB
Markdown
216 lines
8.7 KiB
Markdown
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
|
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=">
|
|
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
|
</div>
|
|
</div>
|
|
|
|
# DistilBERT
|
|
|
|
[DistilBERT](https://huggingface.co/papers/1910.01108) is pretrained by knowledge distillation to create a smaller model with faster inference and requires less compute to train. Through a triple loss objective during pretraining, language modeling loss, distillation loss, cosine-distance loss, DistilBERT demonstrates similar performance to a larger transformer language model.
|
|
|
|
You can find all the original DistilBERT checkpoints under the [DistilBERT](https://huggingface.co/distilbert) organization.
|
|
|
|
> [!TIP]
|
|
> Click on the DistilBERT models in the right sidebar for more examples of how to apply DistilBERT to different language tasks.
|
|
|
|
The example below demonstrates how to classify text with [`Pipeline`], [`AutoModel`], and from the command line.
|
|
|
|
<hfoptions id="usage">
|
|
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
from transformers import pipeline
|
|
|
|
classifier = pipeline(
|
|
task="text-classification",
|
|
model="distilbert-base-uncased-finetuned-sst-2-english",
|
|
torch_dtype=torch.float16,
|
|
device=0
|
|
)
|
|
|
|
result = classifier("I love using Hugging Face Transformers!")
|
|
print(result)
|
|
# Output: [{'label': 'POSITIVE', 'score': 0.9998}]
|
|
```
|
|
|
|
</hfoption>
|
|
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"distilbert/distilbert-base-uncased-finetuned-sst-2-english",
|
|
)
|
|
model = AutoModelForSequenceClassification.from_pretrained(
|
|
"distilbert/distilbert-base-uncased-finetuned-sst-2-english",
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
attn_implementation="sdpa"
|
|
)
|
|
inputs = tokenizer("I love using Hugging Face Transformers!", return_tensors="pt").to("cuda")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
predicted_class_id = torch.argmax(outputs.logits, dim=-1).item()
|
|
predicted_label = model.config.id2label[predicted_class_id]
|
|
print(f"Predicted label: {predicted_label}")
|
|
```
|
|
|
|
</hfoption>
|
|
|
|
<hfoption id="transformers CLI">
|
|
|
|
```bash
|
|
echo -e "I love using Hugging Face Transformers!" | transformers run --task text-classification --model distilbert-base-uncased-finetuned-sst-2-english
|
|
```
|
|
|
|
</hfoption>
|
|
|
|
</hfoptions>
|
|
|
|
## Notes
|
|
|
|
- DistilBERT doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just
|
|
separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`).
|
|
- DistilBERT doesn't have options to select the input positions (`position_ids` input). This could be added if
|
|
necessary though, just let us know if you need this option.
|
|
|
|
## DistilBertConfig
|
|
|
|
[[autodoc]] DistilBertConfig
|
|
|
|
## DistilBertTokenizer
|
|
|
|
[[autodoc]] DistilBertTokenizer
|
|
|
|
## DistilBertTokenizerFast
|
|
|
|
[[autodoc]] DistilBertTokenizerFast
|
|
|
|
<frameworkcontent>
|
|
<pt>
|
|
|
|
## DistilBertModel
|
|
|
|
[[autodoc]] DistilBertModel
|
|
- forward
|
|
|
|
## DistilBertForMaskedLM
|
|
|
|
[[autodoc]] DistilBertForMaskedLM
|
|
- forward
|
|
|
|
## DistilBertForSequenceClassification
|
|
|
|
[[autodoc]] DistilBertForSequenceClassification
|
|
- forward
|
|
|
|
## DistilBertForMultipleChoice
|
|
|
|
[[autodoc]] DistilBertForMultipleChoice
|
|
- forward
|
|
|
|
## DistilBertForTokenClassification
|
|
|
|
[[autodoc]] DistilBertForTokenClassification
|
|
- forward
|
|
|
|
## DistilBertForQuestionAnswering
|
|
|
|
[[autodoc]] DistilBertForQuestionAnswering
|
|
- forward
|
|
|
|
</pt>
|
|
<tf>
|
|
|
|
## TFDistilBertModel
|
|
|
|
[[autodoc]] TFDistilBertModel
|
|
- call
|
|
|
|
## TFDistilBertForMaskedLM
|
|
|
|
[[autodoc]] TFDistilBertForMaskedLM
|
|
- call
|
|
|
|
## TFDistilBertForSequenceClassification
|
|
|
|
[[autodoc]] TFDistilBertForSequenceClassification
|
|
- call
|
|
|
|
## TFDistilBertForMultipleChoice
|
|
|
|
[[autodoc]] TFDistilBertForMultipleChoice
|
|
- call
|
|
|
|
## TFDistilBertForTokenClassification
|
|
|
|
[[autodoc]] TFDistilBertForTokenClassification
|
|
- call
|
|
|
|
## TFDistilBertForQuestionAnswering
|
|
|
|
[[autodoc]] TFDistilBertForQuestionAnswering
|
|
- call
|
|
|
|
</tf>
|
|
<jax>
|
|
|
|
## FlaxDistilBertModel
|
|
|
|
[[autodoc]] FlaxDistilBertModel
|
|
- __call__
|
|
|
|
## FlaxDistilBertForMaskedLM
|
|
|
|
[[autodoc]] FlaxDistilBertForMaskedLM
|
|
- __call__
|
|
|
|
## FlaxDistilBertForSequenceClassification
|
|
|
|
[[autodoc]] FlaxDistilBertForSequenceClassification
|
|
- __call__
|
|
|
|
## FlaxDistilBertForMultipleChoice
|
|
|
|
[[autodoc]] FlaxDistilBertForMultipleChoice
|
|
- __call__
|
|
|
|
## FlaxDistilBertForTokenClassification
|
|
|
|
[[autodoc]] FlaxDistilBertForTokenClassification
|
|
- __call__
|
|
|
|
## FlaxDistilBertForQuestionAnswering
|
|
|
|
[[autodoc]] FlaxDistilBertForQuestionAnswering
|
|
- __call__
|
|
|
|
</jax>
|
|
</frameworkcontent>
|