transformers/docs/source/en/index.md
Benjamin Warner 667ed5635e
Add ModernBERT to Transformers (#35158)
* initial cut of modernbert for transformers

* small bug fixes

* fixes

* Update import

* Use compiled mlp->mlp_norm to match research implementation

* Propagate changes in modular to modeling

* Replace duplicate attn_out_dropout in favor of attention_dropout

cc @warner-benjamin let me know if the two should remain separate!

* Update BOS to CLS and EOS to SEP

Please confirm @warner-benjamin

* Set default classifier bias to False, matching research repo

* Update tie_word_embeddings description

* Fix _init_weights for ForMaskedLM

* Match base_model_prefix

* Add compiled_head to match research repo outputs

* Fix imports for ModernBertForMaskedLM

* Just use "gelu" default outright for classifier

* Fix config name typo: initalizer -> initializer

* Remove some unused parameters in docstring. Still lots to edit there!

* Compile the embeddings forward

Not having this resulted in very slight differences - so small it wasn't even noticed for the base model, only for the large model.

But the tiny difference for large propagated at the embedding layer through the rest of the model, leading to notable differences of ~0.0084 average per value, up to 0.2343 for the worst case.

* Add drafts for ForSequenceClassification/ForTokenClassification

* Add initial SDPA support (not exactly equivalent to FA2 yet!)

During testing, FA2 and SDPA still differ by about 0.0098 per value in the token embeddings. It still predicts the correct mask fills, but I'd like to get it fully 1-1 if possible.

* Only use attention dropout if training

* Add initial eager attention support (also not equivalent to FA2 yet!)

Frustratingly, I also can't get eager to be equivalent to FA2 (or sdpa), but it does get really close, i.e. avg ~0.010 difference per value.

Especially if I use fp32 for both FA2&eager, avg ~0.0029 difference per value

The fill-mask results are good with eager.

* Add initial tests, output_attentions, output_hidden_states, prune_heads

Tests are based on BERT, not all tests pass yet: 23 failed, 79 passed, 100 skipped

* Remove kwargs from ModernBertForMaskedLM

Disable sparse_prediction by default to match the normal HF, can be enabled via config

* Remove/adjust/skip improper tests; warn if padding but no attn mask

* Run formatting etc.

* Run python utils/custom_init_isort.py

* FlexAttention with unpadded sequences(matches FA2 within bf16 numerics)

* Reformat init_weights based on review

* self -> module in attention forwards

* Remove if config.tie_word_embeddings

* Reformat output projection on a different line

* Remove pruning

* Remove assert

* Call contiguous() to simplify paths

* Remove prune_qkv_linear_layer

* Format code

* Keep as kwargs, only use if needed

* Remove unused codepaths & related config options

* Remove 3d attn_mask test; fix token classification tuple output

* Reorder: attention_mask above position_ids, fixes gradient checkpointing

* Fix usage if no FA2 or torch v2.5+

* Make torch.compile/triton optional

Should we rename 'compile'? It's a bit vague

* Separate pooling options into separate functions (cls, mean) - cls as default

* Simplify _pad_modernbert_output, remove unused labels path

* Update tied weights to remove decoder.weight, simplify decoder loading

* Adaptively set config.compile based on hf_device_map/device/resize, etc.

* Update ModernBertConfig docstring

* Satisfy some consistency checks, add unfinished docs

* Only set compile to False if there's more than 1 device

* Add docstrings for public ModernBert classes

* Dont replace docstring returns - ends up being duplicate

* Fix mistake in toctree

* Reformat toctree

* Patched FlexAttention, SDPA, Eager with Local Attention

* Implement FA2 -> SDPA -> Eager attn_impl defaulting, crucial

both to match the original performance, and to get the highest inference speed without requiring users to manually pick FA2

* Patch test edge case with Idefics3 not working with 'attn_implementation="sdpa"'

* Repad all_hidden_states as well

* rename config.compile to reference_compile

* disable flex_attention since it crashes

* Update modernbert.md

* Using dtype min to mask in eager

* Fully remove flex attention for now

It's only compatible with the nightly torch 2.6, so we'll leave it be for now. It's also slower than eager/sdpa.

Also, update compile -> reference_compile in one more case

* Call contiguous to allow for .view()

* Copyright 2020 -> 2024

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update/simplify __init__ structure

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove "... if dropout_prob > 0 else identity"

As dropout with 0.0 should be efficient like identity

* re-use existing pad/unpad functions instead of creating new ones

* remove flexattention method

* Compute attention_mask and local_attention_mask once in modeling

* Simplify sequence classification prediction heads, only CLS now

Users can make custom heads if they feel like it

Also removes the unnecessary pool parameter

* Simplify module.training in eager attn

* Also export ModernBertPreTrainedModel

* Update the documentation with links to finetuning scripts

* Explain local_attention_mask parameter in docstring

* Simplify _autoset_attn_implementation, rely on super()

* Keep "in" to initialize Prediction head

Doublechecked with Benjamin that it's correct/what we used for pretraining

* add back mean pooling

* Use the pooling head in TokenClassification

* update copyright

* Reset config._attn_implementation_internal on failure

* Allow optional attention_mask in ForMaskedLM head

* fix failing run_slow tests

* Add links to the paper

* Remove unpad_no_grad, always pad/unpad without gradients

* local_attention_mask -> sliding_window_mask

* Revert "Use the pooling head in TokenClassification"

This reverts commit 99c38badd1.

There was no real motivation, no info on whether having this bigger head does anything useful.

* Simplify pooling, 2 options via if-else

---------

Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
Co-authored-by: Said Taghadouini <taghadouinisaid@gmail.com>
Co-authored-by: Benjamin Clavié <ben@clavie.eu>
Co-authored-by: Antoine Chaffin <ant54600@hotmail.fr>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-12-19 14:03:35 +01:00

46 KiB

🤗 Transformers

State-of-the-art Machine Learning for PyTorch, TensorFlow, and JAX.

🤗 Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities, such as:

📝 Natural Language Processing: text classification, named entity recognition, question answering, language modeling, code generation, summarization, translation, multiple choice, and text generation.
🖼️ Computer Vision: image classification, object detection, and segmentation.
🗣️ Audio: automatic speech recognition and audio classification.
🐙 Multimodal: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.

🤗 Transformers support framework interoperability between PyTorch, TensorFlow, and JAX. This provides the flexibility to use a different framework at each stage of a model's life; train a model in three lines of code in one framework, and load it for inference in another. Models can also be exported to a format like ONNX and TorchScript for deployment in production environments.

Join the growing community on the Hub, forum, or Discord today!

If you are looking for custom support from the Hugging Face team

HuggingFace Expert Acceleration Program

Contents

The documentation is organized into five sections:

  • GET STARTED provides a quick tour of the library and installation instructions to get up and running.

  • TUTORIALS are a great place to start if you're a beginner. This section will help you gain the basic skills you need to start using the library.

  • HOW-TO GUIDES show you how to achieve a specific goal, like finetuning a pretrained model for language modeling or how to write and share a custom model.

  • CONCEPTUAL GUIDES offers more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.

  • API describes all classes and functions:

    • MAIN CLASSES details the most important classes like configuration, model, tokenizer, and pipeline.
    • MODELS details the classes and functions related to each model implemented in the library.
    • INTERNAL HELPERS details utility classes and functions used internally.

Supported models and frameworks

The table below represents the current support in the library for each of those models, whether they have a Python tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in Jax (via Flax), PyTorch, and/or TensorFlow.

Model PyTorch support TensorFlow support Flax Support
ALBERT
ALIGN
AltCLIP
Aria
AriaText
Audio Spectrogram Transformer
Autoformer
Bamba
Bark
BART
BARThez
BARTpho
BEiT
BERT
Bert Generation
BertJapanese
BERTweet
BigBird
BigBird-Pegasus
BioGpt
BiT
Blenderbot
BlenderbotSmall
BLIP
BLIP-2
BLOOM
BORT
BridgeTower
BROS
ByT5
CamemBERT
CANINE
Chameleon
Chinese-CLIP
CLAP
CLIP
CLIPSeg
CLVP
CodeGen
CodeLlama
Cohere
Cohere2
ColPali
Conditional DETR
ConvBERT
ConvNeXT
ConvNeXTV2
CPM
CPM-Ant
CTRL
CvT
DAC
Data2VecAudio
Data2VecText
Data2VecVision
DBRX
DeBERTa
DeBERTa-v2
Decision Transformer
Deformable DETR
DeiT
DePlot
Depth Anything
DETA
DETR
DialoGPT
DiNAT
DINOv2
DistilBERT
DiT
DonutSwin
DPR
DPT
EfficientFormer
EfficientNet
ELECTRA
EnCodec
Encoder decoder
ERNIE
ErnieM
ESM
FairSeq Machine-Translation
Falcon
Falcon3
FalconMamba
FastSpeech2Conformer
FLAN-T5
FLAN-UL2
FlauBERT
FLAVA
FNet
FocalNet
Funnel Transformer
Fuyu
Gemma
Gemma2
GIT
GLM
GLPN
GPT Neo
GPT NeoX
GPT NeoX Japanese
GPT-J
GPT-Sw3
GPTBigCode
GPTSAN-japanese
Granite
GraniteMoeMoe
Graphormer
Grounding DINO
GroupViT
HerBERT
Hiera
Hubert
I-BERT
I-JEPA
IDEFICS
Idefics2
Idefics3
Idefics3VisionTransformer
ImageGPT
Informer
InstructBLIP
InstructBlipVideo
Jamba
JetMoe
Jukebox
KOSMOS-2
LayoutLM
LayoutLMv2
LayoutLMv3
LayoutXLM
LED
LeViT
LiLT
LLaMA
Llama2
Llama3
LLaVa
LLaVA-NeXT
LLaVa-NeXT-Video
LLaVA-Onevision
Longformer
LongT5
LUKE
LXMERT
M-CTC-T
M2M100
MADLAD-400
Mamba
mamba2
Marian
MarkupLM
Mask2Former
MaskFormer
MatCha
mBART
mBART-50
MEGA
Megatron-BERT
Megatron-GPT2
MGP-STR
Mimi
Mistral
Mixtral
Mllama
mLUKE
MMS
MobileBERT
MobileNetV1
MobileNetV2
MobileViT
MobileViTV2
ModernBERT
Moshi
MPNet
MPT
MRA
MT5
MusicGen
MusicGen Melody
MVP
NAT
Nemotron
Nezha
NLLB
NLLB-MOE
Nougat
Nyströmformer
OLMo
OLMo2
OLMoE
OmDet-Turbo
OneFormer
OpenAI GPT
OpenAI GPT-2
OpenLlama
OPT
OWL-ViT
OWLv2
PaliGemma
PatchTSMixer
PatchTST
Pegasus
PEGASUS-X
Perceiver
Persimmon
Phi
Phi3
Phimoe
PhoBERT
Pix2Struct
Pixtral
PLBart
PoolFormer
Pop2Piano
ProphetNet
PVT
PVTv2
QDQBert
Qwen2
Qwen2Audio
Qwen2MoE
Qwen2VL
RAG
REALM
RecurrentGemma
Reformer
RegNet
RemBERT
ResNet
RetriBERT
RoBERTa
RoBERTa-PreLayerNorm
RoCBert
RoFormer
RT-DETR
RT-DETR-ResNet
RWKV
SAM
SeamlessM4T
SeamlessM4Tv2
SegFormer
SegGPT
SEW
SEW-D
SigLIP
Speech Encoder decoder
Speech2Text
SpeechT5
Splinter
SqueezeBERT
StableLm
Starcoder2
SuperPoint
SwiftFormer
Swin Transformer
Swin Transformer V2
Swin2SR
SwitchTransformers
T5
T5v1.1
Table Transformer
TAPAS
TAPEX
Time Series Transformer
TimeSformer
TimmWrapperModel
Trajectory Transformer
Transformer-XL
TrOCR
TVLT
TVP
UDOP
UL2
UMT5
UniSpeech
UniSpeechSat
UnivNet
UPerNet
VAN
VideoLlava
VideoMAE
ViLT
VipLlava
Vision Encoder decoder
VisionTextDualEncoder
VisualBERT
ViT
ViT Hybrid
VitDet
ViTMAE
ViTMatte
ViTMSN
VITS
ViViT
Wav2Vec2
Wav2Vec2-BERT
Wav2Vec2-Conformer
Wav2Vec2Phoneme
WavLM
Whisper
X-CLIP
X-MOD
XGLM
XLM
XLM-ProphetNet
XLM-RoBERTa
XLM-RoBERTa-XL
XLM-V
XLNet
XLS-R
XLSR-Wav2Vec2
YOLOS
YOSO
Zamba
ZoeDepth