transformers/docs/source/ko/model_doc/dbrx.md
Sungmin Oh cd9a3c49b8
🌐 [i18n-KO] Translated model_doc/dbrx.md to Korean (#33951)
* docs: ko: model_doc/dbrx.md

* feat: nmt draft

* fix: resolve suggestions

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

* fix: resolve suggestions

* fix: resolve suggestions

---------

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
2024-10-08 17:14:42 -07:00

6.2 KiB

DBRXdbrx

개요overview

DBRX는 트랜스포머 기반의 다음 토큰을 예측하는 디코더 전용 LLM 모델입니다. 총 132B 매개변수를 가진 세밀한 전문가 혼합(MoE) 아키텍처를 사용하며, 이 중 36B 매개변수가 입력마다 활성화됩니다. 12T 토큰의 텍스트와 코드 데이터로 사전 학습되었습니다.

Mixtral-8x7B와 Grok-1과 같은 다른 공개 MoE 모델들과 비교했을 때, DBRX는 더 많은 수의 작은 전문가들을 사용하는 세밀한 구조를 가지고 있습니다. DBRX는 16개의 전문가 중 4개를 선택하는 반면, Mixtral-8x7B와 Grok-1은 8개의 전문가 중 2개를 선택합니다.

이는 65배 더 많은 전문가 조합을 가능하게 하며, 이를 통해 모델의 품질이 향상되는 것을 발견했습니다. DBRX는 회전 위치 인코딩(RoPE), 게이트 선형 유닛(GLU), 그룹 쿼리 어텐션(GQA)을 사용합니다. BPE 기반 모델이며 tiktoken 저장소에 설명된 GPT-4 토크나이저를 사용합니다. 이러한 선택들은 철저한 평가와 스케일링 실험을 기반으로 이루어졌습니다.

DBRX는 신중하게 선별된 12T 토큰의 데이터로 사전 학습되었으며, 최대 문맥 길이는 32K 토큰입니다. 이 데이터는 토큰 대비 MPT 계열 모델 학습에 사용된 데이터보다 최소 2배 이상 더 좋은 것으로 추정됩니다. 이 새로운 데이터셋은 데이터 처리를 위한 Apache Spark™와 Databricks 노트북, 그리고 데이터 관리와 거버넌스를 위한 Unity Catalog를 포함한 Databricks 도구 전체를 활용하여 개발되었습니다. 우리는 사전 학습을 위해 커리큘럼 학습을 사용했으며, 학습 중 데이터 믹스를 변경하는 방식이 모델 품질을 상당히 개선한다는 것을 발견했습니다.

DBRX Instruct와 DBRX Base에 대한 더 자세한 정보는 이 기술 블로그 포스트에서 확인할 수 있습니다.

이 모델은 eitan-turokabhi-db가 기여했습니다. 원본 코드는 이곳에서 찾을 수 있지만, 최신 버전이 아닐 수 있습니다.

사용 예usage-examples

generate() 메소드는 DBRX를 사용하여 텍스트를 생성하는 데 사용될 수 있습니다. 표준 어텐션 구현, 플래시 어텐션, PyTorch의 스케일된 내적 어텐션(Scaled Dot-Product Attention)을 사용하여 생성할 수 있습니다. 후자의 두 어텐션 구현 방식은 처리 속도를 크게 높여줍니다.

from transformers import DbrxForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
model = DbrxForCausalLM.from_pretrained(
    "databricks/dbrx-instruct",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    token="YOUR_HF_TOKEN",
    )

input_text = "What does it take to build a great LLM?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))

pip install flash-attn를 통해 플래시 어텐션을 설치하면, 더 빠른 생성이 가능합니다. (플래시 어텐션에 대한 HuggingFace 문서는 이곳에서 확인할 수 있습니다.)

from transformers import DbrxForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
model = DbrxForCausalLM.from_pretrained(
    "databricks/dbrx-instruct",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    token="YOUR_HF_TOKEN",
    attn_implementation="flash_attention_2",
    )

input_text = "What does it take to build a great LLM?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))

PyTorch의 스케일된 내적 어텐션을 사용하여도 더 빠른 생성이 가능합니다. (스케일된 내적 어텐션에 대한 HuggingFace 문서는 이곳에서 확인할 수 있습니다.)

from transformers import DbrxForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
model = DbrxForCausalLM.from_pretrained(
    "databricks/dbrx-instruct",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    token="YOUR_HF_TOKEN",
    attn_implementation="sdpa",
    )

input_text = "What does it take to build a great LLM?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))

DbrxConfigtransformers.DbrxConfig

autodoc DbrxConfig

DbrxModeltransformers.DbrxModel

autodoc DbrxModel - forward

DbrxForCausalLMtransformers.DbrxForCausalLM

autodoc DbrxForCausalLM - forward