transformers/docs/source/en/model_doc/mimi.md
Yoach Lacombe 9ba021ea75
Moshi integration (#33624)
* clean mimi commit

* some nits suggestions from Arthur

* make fixup

* first moshi WIP

* converting weights working + configuration + generation configuration

* finalize converting script - still missing tokenizer and FE and processor

* fix saving model w/o default config

* working generation

* use GenerationMixin instead of inheriting

* add delay pattern mask

* fix right order: moshi codes then user codes

* unconditional inputs + generation config

* get rid of MoshiGenerationConfig

* blank user inputs

* update convert script:fix conversion, add  tokenizer, feature extractor and bf16

* add and correct Auto classes

* update modeling code, configuration and tests

* make fixup

* fix some copies

* WIP: add integration tests

* add dummy objects

* propose better readiblity and code organisation

* update tokenization tests

* update docstrigns, eval and modeling

* add .md

* make fixup

* add MoshiForConditionalGeneration to ignore Auto

* revert mimi changes

* re

* further fix

* Update moshi.md

* correct md formating

* move prepare causal mask to class

* fix copies

* fix depth decoder causal

* fix and correct some tests

* make style and update .md

* correct config checkpoitn

* Update tests/models/moshi/test_tokenization_moshi.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/moshi/test_tokenization_moshi.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* make style

* Update src/transformers/models/moshi/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

* change firm in copyrights

* udpate config with nested dict

* replace einsum

* make style

* change split to True

* add back splt=False

* remove tests in convert

* Update tests/models/moshi/test_modeling_moshi.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add default config repo + add model to FA2 docstrings

* remove logits float

* fix some tokenization tests and ignore some others

* make style tokenization tests

* update modeling with sliding window + update modeling tests

* [run-slow] moshi

* remove prepare for generation frol CausalLM

* isort

* remove copied from

* ignore offload tests

* update causal mask and prepare 4D mask aligned with recent changes

* further test refine + add back prepare_inputs_for_generation for depth decoder

* correct conditional use of prepare mask

* update slow integration tests

* fix multi-device forward

* remove previous solution to device_map

* save_load is flaky

* fix generate multi-devices

* fix device

* move tensor to int

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Marc Sun <marc@huggingface.co>
2024-10-16 11:21:49 +02:00

4.7 KiB

Mimi

Overview

The Mimi model was proposed in Moshi: a speech-text foundation model for real-time dialogue by Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard Grave and Neil Zeghidour. Mimi is a high-fidelity audio codec model developed by the Kyutai team, that combines semantic and acoustic information into audio tokens running at 12Hz and a bitrate of 1.1kbps. In other words, it can be used to map audio waveforms into “audio tokens”, known as “codebooks”.

The abstract from the paper is the following:

We introduce Moshi, a speech-text foundation model and full-duplex spoken dialogue framework. Current systems for spoken dialogue rely on pipelines of independent components, namely voice activity detection, speech recognition, textual dialogue and text-to-speech. Such frameworks cannot emulate the experience of real conversations. First, their complexity induces a latency of several seconds between interactions. Second, text being the intermediate modality for dialogue, non-linguistic information that modifies meaning— such as emotion or non-speech sounds— is lost in the interaction. Finally, they rely on a segmentation into speaker turns, which does not take into account overlapping speech, interruptions and interjections. Moshi solves these independent issues altogether by casting spoken dialogue as speech-to-speech generation. Starting from a text language model backbone, Moshi generates speech as tokens from the residual quantizer of a neural audio codec, while modeling separately its own speech and that of the user into parallel streams. This allows for the removal of explicit speaker turns, and the modeling of arbitrary conversational dynamics. We moreover extend the hierarchical semantic-to-acoustic token generation of previous work to first predict time-aligned text tokens as a prefix to audio tokens. Not only this “Inner Monologue” method significantly improves the linguistic quality of generated speech, but we also illustrate how it can provide streaming speech recognition and text-to-speech. Our resulting model is the first real-time full-duplex spoken large language model, with a theoretical latency of 160ms, 200ms in practice, and is available at github.com/kyutai-labs/moshi.

Its architecture is based on Encodec with several major differences:

  • it uses a much lower frame-rate.
  • it uses additional transformers for encoding and decoding for better latent contextualization
  • it uses a different quantization scheme: one codebook is dedicated to semantic projection.

Usage example

Here is a quick example of how to encode and decode an audio using this model:

>>> from datasets import load_dataset, Audio
>>> from transformers import MimiModel, AutoFeatureExtractor
>>> librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

>>> # load model and feature extractor
>>> model = MimiModel.from_pretrained("kyutai/mimi")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("kyutai/mimi")

>>> # load audio sample
>>> librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
>>> audio_sample = librispeech_dummy[-1]["audio"]["array"]
>>> inputs = feature_extractor(raw_audio=audio_sample, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")

>>> encoder_outputs = model.encode(inputs["input_values"], inputs["padding_mask"])
>>> audio_values = model.decode(encoder_outputs.audio_codes, inputs["padding_mask"])[0]
>>> # or the equivalent with a forward pass
>>> audio_values = model(inputs["input_values"], inputs["padding_mask"]).audio_values

This model was contributed by Yoach Lacombe (ylacombe). The original code can be found here.

MimiConfig

autodoc MimiConfig

MimiModel

autodoc MimiModel - decode - encode - forward