
* Fixed typo: insted to instead * Fixed typo: relase to release * Fixed typo: nighlty to nightly * Fixed typos: versatible, benchamarks, becnhmark to versatile, benchmark, benchmarks * Fixed typo in comment: quantizd to quantized * Fixed typo: architecutre to architecture * Fixed typo: contibution to contribution * Fixed typo: Presequities to Prerequisites * Fixed typo: faste to faster * Fixed typo: extendeding to extending * Fixed typo: segmetantion_maps to segmentation_maps * Fixed typo: Alternativelly to Alternatively * Fixed incorrectly defined variable: output to output_disabled * Fixed typo in library name: tranformers.onnx to transformers.onnx * Fixed missing import: import tensorflow as tf * Fixed incorrectly defined variable: token_tensor to tokens_tensor * Fixed missing import: import torch * Fixed incorrectly defined variable and typo: uromaize to uromanize * Fixed incorrectly defined variable and typo: uromaize to uromanize * Fixed typo in function args: numpy.ndarry to numpy.ndarray * Fixed Inconsistent Library Name: Torchscript to TorchScript * Fixed Inconsistent Class Name: OneformerProcessor to OneFormerProcessor * Fixed Inconsistent Class Named Typo: TFLNetForMultipleChoice to TFXLNetForMultipleChoice * Fixed Inconsistent Library Name Typo: Pytorch to PyTorch * Fixed Inconsistent Function Name Typo: captureWarning to captureWarnings * Fixed Inconsistent Library Name Typo: Pytorch to PyTorch * Fixed Inconsistent Class Name Typo: TrainingArgument to TrainingArguments * Fixed Inconsistent Model Name Typo: Swin2R to Swin2SR * Fixed Inconsistent Model Name Typo: EART to BERT * Fixed Inconsistent Library Name Typo: TensorFLow to TensorFlow * Fixed Broken Link for Speech Emotion Classification with Wav2Vec2 * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed minor missing word Typo * Fixed Punctuation: Two commas * Fixed Punctuation: No Space between XLM-R and is * Fixed Punctuation: No Space between [~accelerate.Accelerator.backward] and method * Added backticks to display model.fit() in codeblock * Added backticks to display openai-community/gpt2 in codeblock * Fixed Minor Typo: will to with * Fixed Minor Typo: is to are * Fixed Minor Typo: in to on * Fixed Minor Typo: inhibits to exhibits * Fixed Minor Typo: they need to it needs * Fixed Minor Typo: cast the load the checkpoints To load the checkpoints * Fixed Inconsistent Class Name Typo: TFCamembertForCasualLM to TFCamembertForCausalLM * Fixed typo in attribute name: outputs.last_hidden_states to outputs.last_hidden_state * Added missing verbosity level: fatal * Fixed Minor Typo: take To takes * Fixed Minor Typo: heuristic To heuristics * Fixed Minor Typo: setting To settings * Fixed Minor Typo: Content To Contents * Fixed Minor Typo: millions To million * Fixed Minor Typo: difference To differences * Fixed Minor Typo: while extract To which extracts * Fixed Minor Typo: Hereby To Here * Fixed Minor Typo: addition To additional * Fixed Minor Typo: supports To supported * Fixed Minor Typo: so that benchmark results TO as a consequence, benchmark * Fixed Minor Typo: a To an * Fixed Minor Typo: a To an * Fixed Minor Typo: Chain-of-though To Chain-of-thought
4.2 KiB
CamemBERT
Overview
The CamemBERT model was proposed in CamemBERT: a Tasty French Language Model by Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah, and Benoît Sagot. It is based on Facebook's RoBERTa model released in 2019. It is a model trained on 138GB of French text.
The abstract from the paper is the following:
Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available models have either been trained on English data or on the concatenation of data in multiple languages. This makes practical use of such models --in all languages except English-- very limited. Aiming to address this issue for French, we release CamemBERT, a French version of the Bi-directional Encoders for Transformers (BERT). We measure the performance of CamemBERT compared to multilingual models in multiple downstream tasks, namely part-of-speech tagging, dependency parsing, named-entity recognition, and natural language inference. CamemBERT improves the state of the art for most of the tasks considered. We release the pretrained model for CamemBERT hoping to foster research and downstream applications for French NLP.
This model was contributed by the ALMAnaCH team (Inria). The original code can be found here.
This implementation is the same as RoBERTa. Refer to the documentation of RoBERTa for usage examples as well as the information relative to the inputs and outputs.
Resources
- Text classification task guide
- Token classification task guide
- Question answering task guide
- Causal language modeling task guide
- Masked language modeling task guide
- Multiple choice task guide
CamembertConfig
autodoc CamembertConfig
CamembertTokenizer
autodoc CamembertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
CamembertTokenizerFast
autodoc CamembertTokenizerFast
CamembertModel
autodoc CamembertModel
CamembertForCausalLM
autodoc CamembertForCausalLM
CamembertForMaskedLM
autodoc CamembertForMaskedLM
CamembertForSequenceClassification
autodoc CamembertForSequenceClassification
CamembertForMultipleChoice
autodoc CamembertForMultipleChoice
CamembertForTokenClassification
autodoc CamembertForTokenClassification
CamembertForQuestionAnswering
autodoc CamembertForQuestionAnswering
TFCamembertModel
autodoc TFCamembertModel
TFCamembertForCausalLM
autodoc TFCamembertForCausalLM
TFCamembertForMaskedLM
autodoc TFCamembertForMaskedLM
TFCamembertForSequenceClassification
autodoc TFCamembertForSequenceClassification
TFCamembertForMultipleChoice
autodoc TFCamembertForMultipleChoice
TFCamembertForTokenClassification
autodoc TFCamembertForTokenClassification
TFCamembertForQuestionAnswering
autodoc TFCamembertForQuestionAnswering