transformers/tests/quantization/ggml/test_ggml.py
Isotr0py c69e23455d
Support loading Gemma3 QAT GGUF models (#37649)
* fix gemma3 qat gguf support

Signed-off-by: isotr0py <2037008807@qq.com>

* update test

Signed-off-by: isotr0py <2037008807@qq.com>

* make ruff happy

Signed-off-by: isotr0py <2037008807@qq.com>

---------

Signed-off-by: isotr0py <2037008807@qq.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-04-22 11:23:17 +02:00

957 lines
42 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from parameterized import parameterized
from transformers import AddedToken, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.testing_utils import (
require_gguf,
require_read_token,
require_torch_gpu,
slow,
torch_device,
)
from transformers.utils import is_gguf_available, is_torch_available
if is_torch_available():
import torch
if is_gguf_available():
from gguf import GGMLQuantizationType as QuantType
@require_gguf
@require_torch_gpu
@slow
class GgufQuantizationTests(unittest.TestCase):
"""
Test cases for weights dequantization with GGUF models.
Note: The quantization names should keep aligned with `GGMLQuantizationType` in gguf-py:
https://github.com/ggerganov/llama.cpp/blob/4b0c638b9a68f577cb2066b638c9f622d91ee661/gguf-py/gguf/constants.py#L1545-L1576
So quantization like Q4_K_M or Q4_K_S shouldn't be added to this tests.
"""
example_text = "Hello"
def run_gguf_model(self, gguf_model_id: str, gguf_filename: str, expected_text: str):
tokenizer = AutoTokenizer.from_pretrained(gguf_model_id, gguf_file=gguf_filename)
model = AutoModelForCausalLM.from_pretrained(gguf_model_id, gguf_file=gguf_filename).to(torch_device)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), expected_text)
@parameterized.expand(
[
# standard quants
("Q4_0", "Hello, World!\n\nStep 3: Add"),
("Q5_0", "Hello, World!\n\n5. Use a library"),
("Q8_0", "Hello, World!\n\n5. Use a library"),
],
)
def test_standard_quants(self, quant_type: str, expected_text: str):
gguf_model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
filename_format = "tinyllama-1.1b-chat-v1.0.{quant_type}.gguf"
gguf_filename = filename_format.format(quant_type=quant_type)
self.run_gguf_model(gguf_model_id, gguf_filename, expected_text)
# k-quants
@parameterized.expand(
[
("Q2_K", "Hello, I'm a 22 year old female"),
("Q3_K", "Hello\n\nI am trying to create a simple program that"),
("Q4_K", "Hello\n\nI am trying to create a simple program that"),
("Q5_K", "Helloveda is a 1999 Indian"),
("Q6_K", "Hello\n\nI am trying to create a simple program that"),
],
)
def test_k_quants(self, quant_type: str, expected_text: str):
gguf_model_id = "legraphista/Qwen2.5-0.5B-Instruct-IMat-GGUF"
filename_format = "Qwen2.5-0.5B-Instruct.{quant_type}.gguf"
gguf_filename = filename_format.format(quant_type=quant_type)
self.run_gguf_model(gguf_model_id, gguf_filename, expected_text)
@parameterized.expand(
[
# i-matrix
("IQ1_S", "Hello, I'm a friend of mine, I"),
("IQ1_M", "Hello, I am interested in purching a copy of"),
("IQ2_XXS", "Hello, I'm a software engineer. I'"),
("IQ2_XS", "Hello World!\n\n```\n<|user|"),
("IQ2_S", "Hello World!\n\n```\n<|user|"),
("IQ3_XXS", "Hello, I am interested in your product. Can you"),
("IQ4_XS", "Hello, world!\n\n5. Using a loop"),
("IQ3_S", "Hello, World!\n\n5. Python:\n"),
("IQ4_NL", "Hello, world!\n\n5. Using a loop"),
],
)
def test_imatrix_quants(self, quant_type: str, expected_text: str):
gguf_model_id = "duyntnet/TinyLlama-1.1B-Chat-v1.0-imatrix-GGUF"
filename_format = "TinyLlama-1.1B-Chat-v1.0-{quant_type}.gguf"
gguf_filename = filename_format.format(quant_type=quant_type)
self.run_gguf_model(gguf_model_id, gguf_filename, expected_text)
@require_gguf
@require_torch_gpu
@slow
class GgufIntegrationTests(unittest.TestCase):
"""
Test cases for basic interoperability with GGUF models:
- Tokenization
- Model dtype casting and serialization
"""
example_text = "Hello"
original_model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
gguf_model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
gguf_filename = "tinyllama-1.1b-chat-v1.0.{quant_type}.gguf"
def test_tokenization_xnli(self):
import tqdm
from datasets import load_dataset
q8_0_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q8_0.name)
gguf_tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q8_0_gguf_model_id)
original_tokenizer = AutoTokenizer.from_pretrained(self.original_model_id)
dataset = load_dataset("google/code_x_glue_ct_code_to_text", "go")
for item in tqdm.tqdm(dataset["validation"]):
string = item["code"]
encoded1 = gguf_tokenizer.encode(string)
encoded2 = original_tokenizer.encode(string)
self.assertEqual(encoded1, encoded2)
decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
dataset = load_dataset("facebook/xnli", "all_languages")
for i, item in enumerate(tqdm.tqdm(dataset["train"].select(range(100)))):
for string in item["premise"].values():
encoded1 = gguf_tokenizer.encode(string)
encoded2 = original_tokenizer.encode(string)
self.assertEqual(encoded1, encoded2)
decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
# With special tokens
gguf_tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q8_0_gguf_model_id)
original_tokenizer = AutoTokenizer.from_pretrained(self.original_model_id)
gguf_tokenizer.add_special_tokens(
{"additional_special_tokens": [AddedToken("<token>", rstrip=False, lstrip=False)]}
)
original_tokenizer.add_special_tokens(
{"additional_special_tokens": [AddedToken("<token>", rstrip=False, lstrip=False)]}
)
text = "Hello <token>. <token> Hello"
encoded1 = gguf_tokenizer.encode(text)
encoded2 = original_tokenizer.encode(text)
self.assertEqual(encoded1, encoded2)
decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
def test_q2_k_serialization(self):
q2_k_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q2_K.name)
EXPECTED_TEXT = "Hello, World!\n\n[10:0"
tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q2_k_gguf_model_id)
model = AutoModelForCausalLM.from_pretrained(self.gguf_model_id, gguf_file=q2_k_gguf_model_id).to(torch_device)
orig_text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
orig_out = model.generate(**orig_text, max_new_tokens=10)
self.assertEqual(tokenizer.decode(orig_out[0], skip_special_tokens=True), EXPECTED_TEXT)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
tokenizer.save_pretrained(tmpdirname)
model = AutoModelForCausalLM.from_pretrained(tmpdirname).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(tmpdirname)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_q6_k_fp16(self):
q6_k_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q6_K.name)
tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q6_k_gguf_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.gguf_model_id, gguf_file=q6_k_gguf_model_id, torch_dtype=torch.float16
).to(torch_device)
self.assertTrue(model.lm_head.weight.dtype == torch.float16)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, World!\n\nStep 3: Add"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_gguf_errors_disk_offload(self):
from collections import OrderedDict
q2_k_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q2_K.name)
with self.assertRaises(RuntimeError):
AutoModelForCausalLM.from_pretrained(
self.gguf_model_id,
device_map=OrderedDict(
[
("model.embed_tokens", "cpu"),
("lm_head", "cpu"),
("model.layers.0", "cpu"),
("model.layers.1", "cpu"),
("model.layers.2", "cpu"),
("model.layers.3", "cpu"),
("model.layers.4", "cpu"),
("model.layers.5", "cpu"),
("model.layers.6", "cpu"),
("model.layers.7", "cpu"),
("model.layers.8", "cpu"),
("model.layers.9", "cpu"),
("model.layers.10", "disk"),
("model.layers.11", "disk"),
("model.layers.12", "disk"),
("model.layers.13", "disk"),
("model.layers.14", "disk"),
("model.layers.15", "disk"),
("model.layers.16", "disk"),
("model.layers.17", "disk"),
("model.layers.18", "disk"),
("model.layers.19", "disk"),
("model.layers.20", "disk"),
("model.layers.21", "disk"),
("model.layers.22", "disk"),
("model.norm", "disk"),
("model.rotary_emb", "disk"),
]
),
gguf_file=q2_k_gguf_model_id,
offload_folder="offload",
offload_state_dict=True,
)
@require_gguf
@require_torch_gpu
@slow
class GgufModelTests(unittest.TestCase):
mistral_model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF"
qwen2_model_id = "Qwen/Qwen1.5-0.5B-Chat-GGUF"
qwen2moe_model_id = "gdax/Qwen1.5-MoE-A2.7B_gguf"
qwen2moe_original_model_id = "Qwen/Qwen1.5-MoE-A2.7B"
llama3_model_id = "NousResearch/Meta-Llama-3-8B-GGUF"
tinyllama_model_id = "PenutChen/TinyLlama-1.1B-Chat-v1.0-GGUF"
phi3_model_id = "microsoft/Phi-3-mini-4k-instruct-gguf"
bloom_model_id = "afrideva/bloom-560m-GGUF"
original_bloom_model_id = "bigscience/bloom-560m"
falcon7b_model_id_q2 = "xaviviro/falcon-7b-quantized-gguf"
falcon7b_model_id_fp16 = "medmekk/falcon-7b-gguf"
falcon40b_model_id = "maddes8cht/tiiuae-falcon-40b-gguf"
original_flacon7b_model_id = "tiiuae/falcon-7b"
t5_model_id = "repetitio/flan-t5-small"
original_t5_model_id = "google/flan-t5-small"
stablelm_model_id = "afrideva/stablelm-3b-4e1t-GGUF"
stablelm2_model_id = "afrideva/stablelm-2-1_6b-GGUF"
original_stablelm2_model_id = "stabilityai/stablelm-2-1_6b"
gpt2_model_id = "mradermacher/gpt2-GGUF"
gpt2_original_model_id = "openai-community/gpt2"
gpt2_xl_model_id = "RichardErkhov/openai-community_-_gpt2-xl-gguf"
starcoder2_model_id = "QuantFactory/starcoder2-3b-GGUF"
starcoder2_fp16_model_id = "brittlewis12/starcoder2-3b-GGUF"
starcoder2_original_model_id = "bigcode/starcoder2-3b"
mamba_original_model_id = "state-spaces/mamba-2.8b-hf"
mamba_model_id = "jpodivin/mamba-2.8b-hf-GGUF"
nemotron_original_model_id = "nvidia/Nemotron-Mini-4B-Instruct"
nemotron_model_id = "bartowski/Nemotron-Mini-4B-Instruct-GGUF"
original_gemma2_model_id = "google/gemma-2-2b-it"
gemma2_model_id = "bartowski/gemma-2-2b-it-GGUF"
original_gemma3_text_model_id = "google/gemma-3-1b-it"
original_gemma3_vision_model_id = "google/gemma-3-4b-it"
gemma3_qat_model_id = "google/gemma-3-1b-it-qat-q4_0-gguf"
gemma3_text_model_id = "unsloth/gemma-3-1b-it-GGUF"
gemma3_vision_model_id = "unsloth/gemma-3-4b-it-GGUF"
q4_0_phi3_model_id = "Phi-3-mini-4k-instruct-q4.gguf"
q4_0_mistral_model_id = "mistral-7b-instruct-v0.2.Q4_0.gguf"
q4_0_qwen2_model_id = "qwen1_5-0_5b-chat-q4_0.gguf"
q8_qwen2moe_model_id = "Qwen1.5-MoE-A2.7B_Q8_0.gguf"
q4_llama3_model_id = "Meta-Llama-3-8B-Q4_K_M.gguf"
fp16_bloom_model_id = "bloom-560m.fp16.gguf"
q4_k_m_stablelm_model_id = "stablelm-3b-4e1t.q4_k_m.gguf"
fp16_stablelm2_model_id = "stablelm-2-1_6b.fp16.gguf"
q8_bloom_model_id = "bloom-560m.q8_0.gguf"
f16_tinyllama_model_id = "TinyLlama-1.1B-Chat-v1.0.FP16.gguf"
q2_k_falcon7b_model_id = "falcon-7b-q2_k.gguf"
fp16_falcon7b_model_id = "falcon-7b-fp16.gguf"
q2_k_falcon40b_model_id = "tiiuae-falcon-40b-Q2_K.gguf"
fp16_t5_model_id = "flan-t5-small-f16.gguf"
q8_0_t5_model_id = "flan-t5-small-q8_0.gguf"
fp16_qwen2moe_model_id = "Qwen1.5-MoE-A2.7B.gguf"
fp16_gpt2_model_id = "gpt2.f16.gguf"
q8_gpt2_model_id = "gpt2.Q8_0.gguf"
q6_k_gpt2_xl_model_id = "gpt2-xl.Q6_K.gguf"
q6_k_starcoder2_model_id = "starcoder2-3b.Q6_K.gguf"
fp16_starcoder2_gguf_model_id = "starcoder2-3b.fp16.gguf"
q6_k_mamba_model_id = "ggml-model-Q6_K.gguf"
fp16_mamba_model_id = "ggml-model-f16.gguf"
q6_k_nemotron_model_id = "Nemotron-Mini-4B-Instruct-Q6_K.gguf"
fp16_nemotron_model_id = "Nemotron-Mini-4B-Instruct-f16.gguf"
q3_k_gemma2_model_id = "gemma-2-2b-it-Q3_K_L.gguf"
q8_0_gemma2_model_id = "gemma-2-2b-it-Q8_0.gguf"
fp32_gemma2_model_id = "gemma-2-2b-it-f32.gguf"
q4_0_gemma3_qat_model_id = "gemma-3-1b-it-q4_0.gguf"
bf16_gemma3_text_model_id = "gemma-3-1b-it-BF16.gguf"
bf16_gemma3_vision_model_id = "gemma-3-4b-it-BF16.gguf"
example_text = "Hello"
def test_mistral_q4_0(self):
tokenizer = AutoTokenizer.from_pretrained(self.mistral_model_id, gguf_file=self.q4_0_mistral_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.mistral_model_id,
gguf_file=self.q4_0_mistral_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello,\n\nI'm trying to create a"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_qwen2_q4_0(self):
tokenizer = AutoTokenizer.from_pretrained(self.qwen2_model_id, gguf_file=self.q4_0_qwen2_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.qwen2_model_id,
gguf_file=self.q4_0_qwen2_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello.jsoup\n\nI am a beginner"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_qwen2moe_q8(self):
tokenizer = AutoTokenizer.from_pretrained(self.qwen2moe_model_id, gguf_file=self.q8_qwen2moe_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.qwen2moe_model_id,
gguf_file=self.q8_qwen2moe_model_id,
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt")
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, I am a 20 year old male"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_qwen2moe_weights_conversion_fp16(self):
quantized_model = AutoModelForCausalLM.from_pretrained(
self.qwen2moe_model_id,
gguf_file=self.fp16_qwen2moe_model_id,
torch_dtype=torch.float16,
)
original_model = AutoModelForCausalLM.from_pretrained(
self.qwen2moe_original_model_id,
torch_dtype=torch.float16,
)
quantized_state_dict = quantized_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in quantized_state_dict:
self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, quantized_state_dict[layer_name])
def test_phi3_q4_0(self):
tokenizer = AutoTokenizer.from_pretrained(self.phi3_model_id, gguf_file=self.q4_0_phi3_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.phi3_model_id, gguf_file=self.q4_0_phi3_model_id, device_map="auto", torch_dtype=torch.float16
)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, I've been reading about the impact of"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_llama3_q4_0_tokenizer(self):
tokenizer = AutoTokenizer.from_pretrained(self.llama3_model_id, gguf_file=self.q4_llama3_model_id)
with tempfile.TemporaryDirectory() as tmpdirname:
tokenizer.save_pretrained(tmpdirname)
tokenizer = AutoTokenizer.from_pretrained(tmpdirname)
special_sentence = "สวัสดี"
predicted_text = tokenizer.decode(tokenizer.encode(special_sentence, return_tensors="pt")[0])
self.assertEqual(predicted_text, "<|begin_of_text|>" + special_sentence)
def test_llama3_q4_0(self):
tokenizer = AutoTokenizer.from_pretrained(self.llama3_model_id, gguf_file=self.q4_llama3_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.llama3_model_id,
gguf_file=self.q4_llama3_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, I am interested in [The Park]\nThe"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_bloom_fp16(self):
tokenizer = AutoTokenizer.from_pretrained(self.bloom_model_id, gguf_file=self.fp16_bloom_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.bloom_model_id,
gguf_file=self.fp16_bloom_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, I just want to say that I am very"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_bloom_q8_0(self):
tokenizer = AutoTokenizer.from_pretrained(self.bloom_model_id, gguf_file=self.q8_bloom_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.bloom_model_id,
gguf_file=self.q8_bloom_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, I just want to say that I am just"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_bloom_weights_conversion_fp16(self):
quantized_model = AutoModelForCausalLM.from_pretrained(
self.bloom_model_id,
gguf_file=self.fp16_bloom_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
original_model = AutoModelForCausalLM.from_pretrained(
self.original_bloom_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
quantized_state_dict = quantized_model.state_dict()
original_state_dict = original_model.state_dict()
for (quantized_name, quantized_param), (original_name, original_param) in zip(
quantized_state_dict.items(), original_state_dict.items()
):
if (
"self_attention.query_key_value" in quantized_name
and "self_attention.query_key_value" in original_name
):
self.assertTrue(quantized_param.shape == original_param.shape)
torch.testing.assert_close(quantized_param, original_param)
def test_t5_f16(self):
tokenizer = AutoTokenizer.from_pretrained(self.t5_model_id, gguf_file=self.fp16_t5_model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(
self.t5_model_id, gguf_file=self.fp16_t5_model_id, device_map="auto", torch_dtype=torch.float16
)
T5_EXAMPLE_TEXT = "translate English to German: How old are you?"
text = tokenizer(T5_EXAMPLE_TEXT, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Wie ich er?"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_t5_q8_0(self):
tokenizer = AutoTokenizer.from_pretrained(self.t5_model_id, gguf_file=self.q8_0_t5_model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(
self.t5_model_id, gguf_file=self.q8_0_t5_model_id, device_map="auto", torch_dtype=torch.float16
)
T5_EXAMPLE_TEXT = "translate English to German: How old are you?"
text = tokenizer(T5_EXAMPLE_TEXT, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Wie ich er?"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_t5_weights_conversion_fp16(self):
quantized_model = AutoModelForSeq2SeqLM.from_pretrained(
self.t5_model_id,
gguf_file=self.fp16_t5_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
original_model = AutoModelForSeq2SeqLM.from_pretrained(
self.original_t5_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
quantized_state_dict = quantized_model.state_dict()
original_state_dict = original_model.state_dict()
for (quantized_name, quantized_param), (original_name, original_param) in zip(
quantized_state_dict.items(), original_state_dict.items()
):
self.assertTrue(quantized_param.shape == original_param.shape)
torch.testing.assert_close(quantized_param, original_param, rtol=5e-04, atol=5e-04)
def test_gpt2_q8(self):
tokenizer = AutoTokenizer.from_pretrained(self.gpt2_model_id, gguf_file=self.q8_gpt2_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.gpt2_model_id,
gguf_file=self.q8_gpt2_model_id,
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt")
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, I'm sorry. I'm sorry. I"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_gpt2_weights_conversion_fp16(self):
quantized_model = AutoModelForCausalLM.from_pretrained(
self.gpt2_model_id,
gguf_file=self.fp16_gpt2_model_id,
torch_dtype=torch.float16,
)
original_model = AutoModelForCausalLM.from_pretrained(
self.gpt2_original_model_id,
torch_dtype=torch.float16,
)
quantized_state_dict = quantized_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in quantized_state_dict:
self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, quantized_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")
def test_gpt2_xl_Q6_K(self):
tokenizer = AutoTokenizer.from_pretrained(self.gpt2_xl_model_id, gguf_file=self.q6_k_gpt2_xl_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.gpt2_xl_model_id,
gguf_file=self.q6_k_gpt2_xl_model_id,
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt")
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, I'm a newbie to the world of"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
@unittest.skip(reason="Heavy memory")
def test_falcon40b_q2_k(self):
tokenizer = AutoTokenizer.from_pretrained(self.falcon40b_model_id, gguf_file=self.q2_k_falcon40b_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.falcon40b_model_id,
gguf_file=self.q2_k_falcon40b_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello All,\nI am new to this forum."
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_falcon7b_q2_k(self):
tokenizer = AutoTokenizer.from_pretrained(self.falcon7b_model_id_q2, gguf_file=self.q2_k_falcon7b_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.falcon7b_model_id_q2,
gguf_file=self.q2_k_falcon7b_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"].to(torch_device)
out = model.generate(text, max_new_tokens=16)
EXPECTED_TEXT = "Hello All,\nI am new to this forum.\nI am using the "
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
@unittest.skip("The test causes a torch.OutOfMemoryError on the CI but it passes with enough memory")
def test_falcon7b_weights_conversion_fp16(self):
quantized_model = AutoModelForCausalLM.from_pretrained(
self.falcon7b_model_id_fp16,
gguf_file=self.fp16_falcon7b_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
original_model = AutoModelForCausalLM.from_pretrained(
self.original_flacon7b_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
quantized_state_dict = quantized_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in quantized_state_dict:
self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, quantized_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")
def test_stablelm_q4_k_m(self):
model = AutoModelForCausalLM.from_pretrained(
self.stablelm_model_id,
gguf_file=self.q4_k_m_stablelm_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.stablelm_model_id, gguf_file=self.q4_k_m_stablelm_model_id)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello-\nI am trying to create a new user"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_stablelm_fp16(self):
original_model = AutoModelForCausalLM.from_pretrained(
self.original_stablelm2_model_id,
torch_dtype=torch.float16,
)
converted_model = AutoModelForCausalLM.from_pretrained(
self.stablelm2_model_id,
gguf_file=self.fp16_stablelm2_model_id,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.stablelm2_model_id, gguf_file=self.fp16_stablelm2_model_id)
text = tokenizer(self.example_text, return_tensors="pt")
original_out = original_model.generate(**text, max_new_tokens=10)
converted_out = converted_model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, I am a 20 year old male"
self.assertEqual(tokenizer.decode(converted_out[0], skip_special_tokens=True), EXPECTED_TEXT)
self.assertEqual(
tokenizer.decode(converted_out[0], skip_special_tokens=True),
tokenizer.decode(original_out[0], skip_special_tokens=True),
)
def test_stablelm_weights_conversion_fp16(self):
original_model = AutoModelForCausalLM.from_pretrained(
self.original_stablelm2_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
converted_model = AutoModelForCausalLM.from_pretrained(
self.stablelm2_model_id,
gguf_file=self.fp16_stablelm2_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
converted_state_dict = converted_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in converted_state_dict:
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, converted_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")
def test_starcoder2_weights_conversion_fp16(self):
original_model = AutoModelForCausalLM.from_pretrained(
self.starcoder2_original_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
converted_model = AutoModelForCausalLM.from_pretrained(
self.starcoder2_fp16_model_id,
gguf_file=self.fp16_starcoder2_gguf_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
converted_state_dict = converted_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in converted_state_dict:
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, converted_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")
def test_starcoder2_q6_k(self):
example_function_text = "def print_hello_world():"
model = AutoModelForCausalLM.from_pretrained(
self.starcoder2_model_id,
gguf_file=self.q6_k_starcoder2_model_id,
device_map="auto",
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.starcoder2_model_id, gguf_file=self.q6_k_starcoder2_model_id)
text = tokenizer(example_function_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = 'def print_hello_world():\n print("Hello World")\n\ndef print'
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_mamba_weights_conversion_fp16(self):
original_model = AutoModelForCausalLM.from_pretrained(
self.mamba_original_model_id,
torch_dtype=torch.float16,
)
converted_model = AutoModelForCausalLM.from_pretrained(
self.mamba_model_id,
gguf_file=self.fp16_mamba_model_id,
torch_dtype=torch.float16,
)
converted_state_dict = converted_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in converted_state_dict:
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape)
if "mixer.A_log" in layer_name:
# we should increase tolerance after exponential reversing
# and performing np.log(-weights) operation as numbers are slightly different
torch.testing.assert_close(original_params, converted_state_dict[layer_name], rtol=1e-3, atol=1e-3)
else:
torch.testing.assert_close(original_params, converted_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")
def test_mamba_q6_k(self):
model = AutoModelForCausalLM.from_pretrained(
self.mamba_model_id,
gguf_file=self.q6_k_mamba_model_id,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.mamba_model_id, gguf_file=self.q6_k_mamba_model_id)
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"]
out = model.generate(text, max_new_tokens=10)
EXPECTED_TEXT = "Hello,I answerthe question.\n\nA"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_nemotron_weights_conversion_fp16(self):
original_model = AutoModelForCausalLM.from_pretrained(
self.nemotron_original_model_id,
torch_dtype=torch.float16,
)
converted_model = AutoModelForCausalLM.from_pretrained(
self.nemotron_model_id,
gguf_file=self.fp16_nemotron_model_id,
torch_dtype=torch.float16,
)
converted_state_dict = converted_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in converted_state_dict:
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, converted_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")
def test_nemotron_q6_k(self):
model = AutoModelForCausalLM.from_pretrained(
self.nemotron_model_id,
gguf_file=self.q6_k_nemotron_model_id,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.nemotron_model_id, gguf_file=self.q6_k_nemotron_model_id)
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"]
out = model.generate(text, max_new_tokens=16)
EXPECTED_TEXT = "Hello.▁hotmail.com</s>"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_gemma2_q3_k(self):
model = AutoModelForCausalLM.from_pretrained(
self.gemma2_model_id,
gguf_file=self.q3_k_gemma2_model_id,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.q3_k_gemma2_model_id)
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"]
out = model.generate(text, max_new_tokens=10)
EXPECTED_TEXT = "Hello! 👋\n\nI'm trying to create a"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_gemma2_q8_0(self):
model = AutoModelForCausalLM.from_pretrained(
self.gemma2_model_id,
gguf_file=self.q8_0_gemma2_model_id,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.q8_0_gemma2_model_id)
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"]
out = model.generate(text, max_new_tokens=10)
EXPECTED_TEXT = "Hello! 👋\n\nI'm a large language model"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_gemma2_fp32(self):
model = AutoModelForCausalLM.from_pretrained(
self.gemma2_model_id,
gguf_file=self.fp32_gemma2_model_id,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.fp32_gemma2_model_id)
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"]
out = model.generate(text, max_new_tokens=10)
EXPECTED_TEXT = "Hello! 👋\n\nI'm a large language model"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
@require_read_token
def test_gemma2_weights_conversion_fp32(self):
original_model = AutoModelForCausalLM.from_pretrained(
self.original_gemma2_model_id,
torch_dtype=torch.float16,
)
converted_model = AutoModelForCausalLM.from_pretrained(
self.gemma2_model_id,
gguf_file=self.fp32_gemma2_model_id,
torch_dtype=torch.float16,
)
converted_state_dict = converted_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in converted_state_dict:
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, converted_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")
@require_read_token
@unittest.skipUnless(is_gguf_available("0.16.0"), "test requires gguf version >= 0.16.0")
def test_gemma3_qat_q4_0(self):
model = AutoModelForCausalLM.from_pretrained(
self.gemma3_qat_model_id,
gguf_file=self.q4_0_gemma3_qat_model_id,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.gemma3_qat_model_id, gguf_file=self.q4_0_gemma3_qat_model_id)
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"]
out = model.generate(text, max_new_tokens=10)
EXPECTED_TEXT = 'Hello with the prompt, "What is the best way'
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
@require_read_token
@unittest.skipUnless(is_gguf_available("0.16.0"), "test requires gguf version >= 0.16.0")
def test_gemma3_text_weights_conversion_bf16(self):
original_model = AutoModelForCausalLM.from_pretrained(
self.original_gemma3_text_model_id,
torch_dtype=torch.float16,
)
converted_model = AutoModelForCausalLM.from_pretrained(
self.gemma3_text_model_id,
gguf_file=self.bf16_gemma3_text_model_id,
torch_dtype=torch.float16,
)
converted_state_dict = converted_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in converted_state_dict:
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, converted_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")
# Test text backbone conversion for gemma3 vision models
@require_read_token
@unittest.skipUnless(is_gguf_available("0.16.0"), "test requires gguf version >= 0.16.0")
def test_gemma3_vision_weights_conversion_bf16(self):
original_model = AutoModelForCausalLM.from_pretrained(
self.original_gemma3_vision_model_id,
torch_dtype=torch.float16,
).language_model
converted_model = AutoModelForCausalLM.from_pretrained(
self.gemma3_vision_model_id,
gguf_file=self.bf16_gemma3_vision_model_id,
torch_dtype=torch.float16,
)
converted_state_dict = converted_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in converted_state_dict:
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, converted_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")