# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from parameterized import parameterized from transformers import AddedToken, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer from transformers.testing_utils import ( require_gguf, require_read_token, require_torch_gpu, slow, torch_device, ) from transformers.utils import is_gguf_available, is_torch_available if is_torch_available(): import torch if is_gguf_available(): from gguf import GGMLQuantizationType as QuantType @require_gguf @require_torch_gpu @slow class GgufQuantizationTests(unittest.TestCase): """ Test cases for weights dequantization with GGUF models. Note: The quantization names should keep aligned with `GGMLQuantizationType` in gguf-py: https://github.com/ggerganov/llama.cpp/blob/4b0c638b9a68f577cb2066b638c9f622d91ee661/gguf-py/gguf/constants.py#L1545-L1576 So quantization like Q4_K_M or Q4_K_S shouldn't be added to this tests. """ example_text = "Hello" def run_gguf_model(self, gguf_model_id: str, gguf_filename: str, expected_text: str): tokenizer = AutoTokenizer.from_pretrained(gguf_model_id, gguf_file=gguf_filename) model = AutoModelForCausalLM.from_pretrained(gguf_model_id, gguf_file=gguf_filename).to(torch_device) text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), expected_text) @parameterized.expand( [ # standard quants ("Q4_0", "Hello, World!\n\nStep 3: Add"), ("Q5_0", "Hello, World!\n\n5. Use a library"), ("Q8_0", "Hello, World!\n\n5. Use a library"), ], ) def test_standard_quants(self, quant_type: str, expected_text: str): gguf_model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF" filename_format = "tinyllama-1.1b-chat-v1.0.{quant_type}.gguf" gguf_filename = filename_format.format(quant_type=quant_type) self.run_gguf_model(gguf_model_id, gguf_filename, expected_text) # k-quants @parameterized.expand( [ ("Q2_K", "Hello, I'm a 22 year old female"), ("Q3_K", "Hello\n\nI am trying to create a simple program that"), ("Q4_K", "Hello\n\nI am trying to create a simple program that"), ("Q5_K", "Helloveda is a 1999 Indian"), ("Q6_K", "Hello\n\nI am trying to create a simple program that"), ], ) def test_k_quants(self, quant_type: str, expected_text: str): gguf_model_id = "legraphista/Qwen2.5-0.5B-Instruct-IMat-GGUF" filename_format = "Qwen2.5-0.5B-Instruct.{quant_type}.gguf" gguf_filename = filename_format.format(quant_type=quant_type) self.run_gguf_model(gguf_model_id, gguf_filename, expected_text) @parameterized.expand( [ # i-matrix ("IQ1_S", "Hello, I'm a friend of mine, I"), ("IQ1_M", "Hello, I am interested in purching a copy of"), ("IQ2_XXS", "Hello, I'm a software engineer. I'"), ("IQ2_XS", "Hello World!\n\n```\n<|user|"), ("IQ2_S", "Hello World!\n\n```\n<|user|"), ("IQ3_XXS", "Hello, I am interested in your product. Can you"), ("IQ4_XS", "Hello, world!\n\n5. Using a loop"), ("IQ3_S", "Hello, World!\n\n5. Python:\n"), ("IQ4_NL", "Hello, world!\n\n5. Using a loop"), ], ) def test_imatrix_quants(self, quant_type: str, expected_text: str): gguf_model_id = "duyntnet/TinyLlama-1.1B-Chat-v1.0-imatrix-GGUF" filename_format = "TinyLlama-1.1B-Chat-v1.0-{quant_type}.gguf" gguf_filename = filename_format.format(quant_type=quant_type) self.run_gguf_model(gguf_model_id, gguf_filename, expected_text) @require_gguf @require_torch_gpu @slow class GgufIntegrationTests(unittest.TestCase): """ Test cases for basic interoperability with GGUF models: - Tokenization - Model dtype casting and serialization """ example_text = "Hello" original_model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" gguf_model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF" gguf_filename = "tinyllama-1.1b-chat-v1.0.{quant_type}.gguf" def test_tokenization_xnli(self): import tqdm from datasets import load_dataset q8_0_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q8_0.name) gguf_tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q8_0_gguf_model_id) original_tokenizer = AutoTokenizer.from_pretrained(self.original_model_id) dataset = load_dataset("google/code_x_glue_ct_code_to_text", "go") for item in tqdm.tqdm(dataset["validation"]): string = item["code"] encoded1 = gguf_tokenizer.encode(string) encoded2 = original_tokenizer.encode(string) self.assertEqual(encoded1, encoded2) decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True) decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True) self.assertEqual(decoded1, decoded2) dataset = load_dataset("facebook/xnli", "all_languages") for i, item in enumerate(tqdm.tqdm(dataset["train"].select(range(100)))): for string in item["premise"].values(): encoded1 = gguf_tokenizer.encode(string) encoded2 = original_tokenizer.encode(string) self.assertEqual(encoded1, encoded2) decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True) decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True) self.assertEqual(decoded1, decoded2) # With special tokens gguf_tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q8_0_gguf_model_id) original_tokenizer = AutoTokenizer.from_pretrained(self.original_model_id) gguf_tokenizer.add_special_tokens( {"additional_special_tokens": [AddedToken("", rstrip=False, lstrip=False)]} ) original_tokenizer.add_special_tokens( {"additional_special_tokens": [AddedToken("", rstrip=False, lstrip=False)]} ) text = "Hello . Hello" encoded1 = gguf_tokenizer.encode(text) encoded2 = original_tokenizer.encode(text) self.assertEqual(encoded1, encoded2) decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True) decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True) self.assertEqual(decoded1, decoded2) def test_q2_k_serialization(self): q2_k_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q2_K.name) EXPECTED_TEXT = "Hello, World!\n\n[10:0" tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q2_k_gguf_model_id) model = AutoModelForCausalLM.from_pretrained(self.gguf_model_id, gguf_file=q2_k_gguf_model_id).to(torch_device) orig_text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) orig_out = model.generate(**orig_text, max_new_tokens=10) self.assertEqual(tokenizer.decode(orig_out[0], skip_special_tokens=True), EXPECTED_TEXT) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) tokenizer.save_pretrained(tmpdirname) model = AutoModelForCausalLM.from_pretrained(tmpdirname).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(tmpdirname) text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_q6_k_fp16(self): q6_k_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q6_K.name) tokenizer = AutoTokenizer.from_pretrained(self.gguf_model_id, gguf_file=q6_k_gguf_model_id) model = AutoModelForCausalLM.from_pretrained( self.gguf_model_id, gguf_file=q6_k_gguf_model_id, torch_dtype=torch.float16 ).to(torch_device) self.assertTrue(model.lm_head.weight.dtype == torch.float16) text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello, World!\n\nStep 3: Add" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_gguf_errors_disk_offload(self): from collections import OrderedDict q2_k_gguf_model_id = self.gguf_filename.format(quant_type=QuantType.Q2_K.name) with self.assertRaises(RuntimeError): AutoModelForCausalLM.from_pretrained( self.gguf_model_id, device_map=OrderedDict( [ ("model.embed_tokens", "cpu"), ("lm_head", "cpu"), ("model.layers.0", "cpu"), ("model.layers.1", "cpu"), ("model.layers.2", "cpu"), ("model.layers.3", "cpu"), ("model.layers.4", "cpu"), ("model.layers.5", "cpu"), ("model.layers.6", "cpu"), ("model.layers.7", "cpu"), ("model.layers.8", "cpu"), ("model.layers.9", "cpu"), ("model.layers.10", "disk"), ("model.layers.11", "disk"), ("model.layers.12", "disk"), ("model.layers.13", "disk"), ("model.layers.14", "disk"), ("model.layers.15", "disk"), ("model.layers.16", "disk"), ("model.layers.17", "disk"), ("model.layers.18", "disk"), ("model.layers.19", "disk"), ("model.layers.20", "disk"), ("model.layers.21", "disk"), ("model.layers.22", "disk"), ("model.norm", "disk"), ("model.rotary_emb", "disk"), ] ), gguf_file=q2_k_gguf_model_id, offload_folder="offload", offload_state_dict=True, ) @require_gguf @require_torch_gpu @slow class GgufModelTests(unittest.TestCase): mistral_model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF" qwen2_model_id = "Qwen/Qwen1.5-0.5B-Chat-GGUF" qwen2moe_model_id = "gdax/Qwen1.5-MoE-A2.7B_gguf" qwen2moe_original_model_id = "Qwen/Qwen1.5-MoE-A2.7B" llama3_model_id = "NousResearch/Meta-Llama-3-8B-GGUF" tinyllama_model_id = "PenutChen/TinyLlama-1.1B-Chat-v1.0-GGUF" phi3_model_id = "microsoft/Phi-3-mini-4k-instruct-gguf" bloom_model_id = "afrideva/bloom-560m-GGUF" original_bloom_model_id = "bigscience/bloom-560m" falcon7b_model_id_q2 = "xaviviro/falcon-7b-quantized-gguf" falcon7b_model_id_fp16 = "medmekk/falcon-7b-gguf" falcon40b_model_id = "maddes8cht/tiiuae-falcon-40b-gguf" original_flacon7b_model_id = "tiiuae/falcon-7b" t5_model_id = "repetitio/flan-t5-small" original_t5_model_id = "google/flan-t5-small" stablelm_model_id = "afrideva/stablelm-3b-4e1t-GGUF" stablelm2_model_id = "afrideva/stablelm-2-1_6b-GGUF" original_stablelm2_model_id = "stabilityai/stablelm-2-1_6b" gpt2_model_id = "mradermacher/gpt2-GGUF" gpt2_original_model_id = "openai-community/gpt2" gpt2_xl_model_id = "RichardErkhov/openai-community_-_gpt2-xl-gguf" starcoder2_model_id = "QuantFactory/starcoder2-3b-GGUF" starcoder2_fp16_model_id = "brittlewis12/starcoder2-3b-GGUF" starcoder2_original_model_id = "bigcode/starcoder2-3b" mamba_original_model_id = "state-spaces/mamba-2.8b-hf" mamba_model_id = "jpodivin/mamba-2.8b-hf-GGUF" nemotron_original_model_id = "nvidia/Nemotron-Mini-4B-Instruct" nemotron_model_id = "bartowski/Nemotron-Mini-4B-Instruct-GGUF" original_gemma2_model_id = "google/gemma-2-2b-it" gemma2_model_id = "bartowski/gemma-2-2b-it-GGUF" original_gemma3_text_model_id = "google/gemma-3-1b-it" original_gemma3_vision_model_id = "google/gemma-3-4b-it" gemma3_qat_model_id = "google/gemma-3-1b-it-qat-q4_0-gguf" gemma3_text_model_id = "unsloth/gemma-3-1b-it-GGUF" gemma3_vision_model_id = "unsloth/gemma-3-4b-it-GGUF" q4_0_phi3_model_id = "Phi-3-mini-4k-instruct-q4.gguf" q4_0_mistral_model_id = "mistral-7b-instruct-v0.2.Q4_0.gguf" q4_0_qwen2_model_id = "qwen1_5-0_5b-chat-q4_0.gguf" q8_qwen2moe_model_id = "Qwen1.5-MoE-A2.7B_Q8_0.gguf" q4_llama3_model_id = "Meta-Llama-3-8B-Q4_K_M.gguf" fp16_bloom_model_id = "bloom-560m.fp16.gguf" q4_k_m_stablelm_model_id = "stablelm-3b-4e1t.q4_k_m.gguf" fp16_stablelm2_model_id = "stablelm-2-1_6b.fp16.gguf" q8_bloom_model_id = "bloom-560m.q8_0.gguf" f16_tinyllama_model_id = "TinyLlama-1.1B-Chat-v1.0.FP16.gguf" q2_k_falcon7b_model_id = "falcon-7b-q2_k.gguf" fp16_falcon7b_model_id = "falcon-7b-fp16.gguf" q2_k_falcon40b_model_id = "tiiuae-falcon-40b-Q2_K.gguf" fp16_t5_model_id = "flan-t5-small-f16.gguf" q8_0_t5_model_id = "flan-t5-small-q8_0.gguf" fp16_qwen2moe_model_id = "Qwen1.5-MoE-A2.7B.gguf" fp16_gpt2_model_id = "gpt2.f16.gguf" q8_gpt2_model_id = "gpt2.Q8_0.gguf" q6_k_gpt2_xl_model_id = "gpt2-xl.Q6_K.gguf" q6_k_starcoder2_model_id = "starcoder2-3b.Q6_K.gguf" fp16_starcoder2_gguf_model_id = "starcoder2-3b.fp16.gguf" q6_k_mamba_model_id = "ggml-model-Q6_K.gguf" fp16_mamba_model_id = "ggml-model-f16.gguf" q6_k_nemotron_model_id = "Nemotron-Mini-4B-Instruct-Q6_K.gguf" fp16_nemotron_model_id = "Nemotron-Mini-4B-Instruct-f16.gguf" q3_k_gemma2_model_id = "gemma-2-2b-it-Q3_K_L.gguf" q8_0_gemma2_model_id = "gemma-2-2b-it-Q8_0.gguf" fp32_gemma2_model_id = "gemma-2-2b-it-f32.gguf" q4_0_gemma3_qat_model_id = "gemma-3-1b-it-q4_0.gguf" bf16_gemma3_text_model_id = "gemma-3-1b-it-BF16.gguf" bf16_gemma3_vision_model_id = "gemma-3-4b-it-BF16.gguf" example_text = "Hello" def test_mistral_q4_0(self): tokenizer = AutoTokenizer.from_pretrained(self.mistral_model_id, gguf_file=self.q4_0_mistral_model_id) model = AutoModelForCausalLM.from_pretrained( self.mistral_model_id, gguf_file=self.q4_0_mistral_model_id, device_map="auto", torch_dtype=torch.float16, ) text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello,\n\nI'm trying to create a" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_qwen2_q4_0(self): tokenizer = AutoTokenizer.from_pretrained(self.qwen2_model_id, gguf_file=self.q4_0_qwen2_model_id) model = AutoModelForCausalLM.from_pretrained( self.qwen2_model_id, gguf_file=self.q4_0_qwen2_model_id, device_map="auto", torch_dtype=torch.float16, ) text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello.jsoup\n\nI am a beginner" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_qwen2moe_q8(self): tokenizer = AutoTokenizer.from_pretrained(self.qwen2moe_model_id, gguf_file=self.q8_qwen2moe_model_id) model = AutoModelForCausalLM.from_pretrained( self.qwen2moe_model_id, gguf_file=self.q8_qwen2moe_model_id, torch_dtype=torch.float16, ) text = tokenizer(self.example_text, return_tensors="pt") out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello, I am a 20 year old male" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_qwen2moe_weights_conversion_fp16(self): quantized_model = AutoModelForCausalLM.from_pretrained( self.qwen2moe_model_id, gguf_file=self.fp16_qwen2moe_model_id, torch_dtype=torch.float16, ) original_model = AutoModelForCausalLM.from_pretrained( self.qwen2moe_original_model_id, torch_dtype=torch.float16, ) quantized_state_dict = quantized_model.state_dict() original_state_dict = original_model.state_dict() for layer_name, original_params in original_state_dict.items(): if layer_name in quantized_state_dict: self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape) torch.testing.assert_close(original_params, quantized_state_dict[layer_name]) def test_phi3_q4_0(self): tokenizer = AutoTokenizer.from_pretrained(self.phi3_model_id, gguf_file=self.q4_0_phi3_model_id) model = AutoModelForCausalLM.from_pretrained( self.phi3_model_id, gguf_file=self.q4_0_phi3_model_id, device_map="auto", torch_dtype=torch.float16 ) text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello, I've been reading about the impact of" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_llama3_q4_0_tokenizer(self): tokenizer = AutoTokenizer.from_pretrained(self.llama3_model_id, gguf_file=self.q4_llama3_model_id) with tempfile.TemporaryDirectory() as tmpdirname: tokenizer.save_pretrained(tmpdirname) tokenizer = AutoTokenizer.from_pretrained(tmpdirname) special_sentence = "สวัสดี" predicted_text = tokenizer.decode(tokenizer.encode(special_sentence, return_tensors="pt")[0]) self.assertEqual(predicted_text, "<|begin_of_text|>" + special_sentence) def test_llama3_q4_0(self): tokenizer = AutoTokenizer.from_pretrained(self.llama3_model_id, gguf_file=self.q4_llama3_model_id) model = AutoModelForCausalLM.from_pretrained( self.llama3_model_id, gguf_file=self.q4_llama3_model_id, device_map="auto", torch_dtype=torch.float16, ) text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello, I am interested in [The Park]\nThe" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_bloom_fp16(self): tokenizer = AutoTokenizer.from_pretrained(self.bloom_model_id, gguf_file=self.fp16_bloom_model_id) model = AutoModelForCausalLM.from_pretrained( self.bloom_model_id, gguf_file=self.fp16_bloom_model_id, device_map="auto", torch_dtype=torch.float16, ) text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello, I just want to say that I am very" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_bloom_q8_0(self): tokenizer = AutoTokenizer.from_pretrained(self.bloom_model_id, gguf_file=self.q8_bloom_model_id) model = AutoModelForCausalLM.from_pretrained( self.bloom_model_id, gguf_file=self.q8_bloom_model_id, device_map="auto", torch_dtype=torch.float16, ) text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello, I just want to say that I am just" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_bloom_weights_conversion_fp16(self): quantized_model = AutoModelForCausalLM.from_pretrained( self.bloom_model_id, gguf_file=self.fp16_bloom_model_id, device_map="auto", torch_dtype=torch.float16, ) original_model = AutoModelForCausalLM.from_pretrained( self.original_bloom_model_id, device_map="auto", torch_dtype=torch.float16, ) quantized_state_dict = quantized_model.state_dict() original_state_dict = original_model.state_dict() for (quantized_name, quantized_param), (original_name, original_param) in zip( quantized_state_dict.items(), original_state_dict.items() ): if ( "self_attention.query_key_value" in quantized_name and "self_attention.query_key_value" in original_name ): self.assertTrue(quantized_param.shape == original_param.shape) torch.testing.assert_close(quantized_param, original_param) def test_t5_f16(self): tokenizer = AutoTokenizer.from_pretrained(self.t5_model_id, gguf_file=self.fp16_t5_model_id) model = AutoModelForSeq2SeqLM.from_pretrained( self.t5_model_id, gguf_file=self.fp16_t5_model_id, device_map="auto", torch_dtype=torch.float16 ) T5_EXAMPLE_TEXT = "translate English to German: How old are you?" text = tokenizer(T5_EXAMPLE_TEXT, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Wie ich er?" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_t5_q8_0(self): tokenizer = AutoTokenizer.from_pretrained(self.t5_model_id, gguf_file=self.q8_0_t5_model_id) model = AutoModelForSeq2SeqLM.from_pretrained( self.t5_model_id, gguf_file=self.q8_0_t5_model_id, device_map="auto", torch_dtype=torch.float16 ) T5_EXAMPLE_TEXT = "translate English to German: How old are you?" text = tokenizer(T5_EXAMPLE_TEXT, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Wie ich er?" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_t5_weights_conversion_fp16(self): quantized_model = AutoModelForSeq2SeqLM.from_pretrained( self.t5_model_id, gguf_file=self.fp16_t5_model_id, device_map="auto", torch_dtype=torch.float16, ) original_model = AutoModelForSeq2SeqLM.from_pretrained( self.original_t5_model_id, device_map="auto", torch_dtype=torch.float16, ) quantized_state_dict = quantized_model.state_dict() original_state_dict = original_model.state_dict() for (quantized_name, quantized_param), (original_name, original_param) in zip( quantized_state_dict.items(), original_state_dict.items() ): self.assertTrue(quantized_param.shape == original_param.shape) torch.testing.assert_close(quantized_param, original_param, rtol=5e-04, atol=5e-04) def test_gpt2_q8(self): tokenizer = AutoTokenizer.from_pretrained(self.gpt2_model_id, gguf_file=self.q8_gpt2_model_id) model = AutoModelForCausalLM.from_pretrained( self.gpt2_model_id, gguf_file=self.q8_gpt2_model_id, torch_dtype=torch.float16, ) text = tokenizer(self.example_text, return_tensors="pt") out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello, I'm sorry. I'm sorry. I" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_gpt2_weights_conversion_fp16(self): quantized_model = AutoModelForCausalLM.from_pretrained( self.gpt2_model_id, gguf_file=self.fp16_gpt2_model_id, torch_dtype=torch.float16, ) original_model = AutoModelForCausalLM.from_pretrained( self.gpt2_original_model_id, torch_dtype=torch.float16, ) quantized_state_dict = quantized_model.state_dict() original_state_dict = original_model.state_dict() for layer_name, original_params in original_state_dict.items(): if layer_name in quantized_state_dict: self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape) torch.testing.assert_close(original_params, quantized_state_dict[layer_name]) else: raise ValueError(f"Layer {layer_name} is not presented in GGUF model") def test_gpt2_xl_Q6_K(self): tokenizer = AutoTokenizer.from_pretrained(self.gpt2_xl_model_id, gguf_file=self.q6_k_gpt2_xl_model_id) model = AutoModelForCausalLM.from_pretrained( self.gpt2_xl_model_id, gguf_file=self.q6_k_gpt2_xl_model_id, torch_dtype=torch.float16, ) text = tokenizer(self.example_text, return_tensors="pt") out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello, I'm a newbie to the world of" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) @unittest.skip(reason="Heavy memory") def test_falcon40b_q2_k(self): tokenizer = AutoTokenizer.from_pretrained(self.falcon40b_model_id, gguf_file=self.q2_k_falcon40b_model_id) model = AutoModelForCausalLM.from_pretrained( self.falcon40b_model_id, gguf_file=self.q2_k_falcon40b_model_id, device_map="auto", torch_dtype=torch.float16, ) text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello All,\nI am new to this forum." self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_falcon7b_q2_k(self): tokenizer = AutoTokenizer.from_pretrained(self.falcon7b_model_id_q2, gguf_file=self.q2_k_falcon7b_model_id) model = AutoModelForCausalLM.from_pretrained( self.falcon7b_model_id_q2, gguf_file=self.q2_k_falcon7b_model_id, device_map="auto", torch_dtype=torch.float16, ) text = tokenizer(self.example_text, return_tensors="pt")["input_ids"].to(torch_device) out = model.generate(text, max_new_tokens=16) EXPECTED_TEXT = "Hello All,\nI am new to this forum.\nI am using the " self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) @unittest.skip("The test causes a torch.OutOfMemoryError on the CI but it passes with enough memory") def test_falcon7b_weights_conversion_fp16(self): quantized_model = AutoModelForCausalLM.from_pretrained( self.falcon7b_model_id_fp16, gguf_file=self.fp16_falcon7b_model_id, device_map="auto", torch_dtype=torch.float16, ) original_model = AutoModelForCausalLM.from_pretrained( self.original_flacon7b_model_id, device_map="auto", torch_dtype=torch.float16, ) quantized_state_dict = quantized_model.state_dict() original_state_dict = original_model.state_dict() for layer_name, original_params in original_state_dict.items(): if layer_name in quantized_state_dict: self.assertTrue(original_params.shape == quantized_state_dict[layer_name].shape) torch.testing.assert_close(original_params, quantized_state_dict[layer_name]) else: raise ValueError(f"Layer {layer_name} is not presented in GGUF model") def test_stablelm_q4_k_m(self): model = AutoModelForCausalLM.from_pretrained( self.stablelm_model_id, gguf_file=self.q4_k_m_stablelm_model_id, device_map="auto", torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained(self.stablelm_model_id, gguf_file=self.q4_k_m_stablelm_model_id) text = tokenizer(self.example_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello-\nI am trying to create a new user" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_stablelm_fp16(self): original_model = AutoModelForCausalLM.from_pretrained( self.original_stablelm2_model_id, torch_dtype=torch.float16, ) converted_model = AutoModelForCausalLM.from_pretrained( self.stablelm2_model_id, gguf_file=self.fp16_stablelm2_model_id, torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained(self.stablelm2_model_id, gguf_file=self.fp16_stablelm2_model_id) text = tokenizer(self.example_text, return_tensors="pt") original_out = original_model.generate(**text, max_new_tokens=10) converted_out = converted_model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = "Hello, I am a 20 year old male" self.assertEqual(tokenizer.decode(converted_out[0], skip_special_tokens=True), EXPECTED_TEXT) self.assertEqual( tokenizer.decode(converted_out[0], skip_special_tokens=True), tokenizer.decode(original_out[0], skip_special_tokens=True), ) def test_stablelm_weights_conversion_fp16(self): original_model = AutoModelForCausalLM.from_pretrained( self.original_stablelm2_model_id, device_map="auto", torch_dtype=torch.float16, ) converted_model = AutoModelForCausalLM.from_pretrained( self.stablelm2_model_id, gguf_file=self.fp16_stablelm2_model_id, device_map="auto", torch_dtype=torch.float16, ) converted_state_dict = converted_model.state_dict() original_state_dict = original_model.state_dict() for layer_name, original_params in original_state_dict.items(): if layer_name in converted_state_dict: self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) torch.testing.assert_close(original_params, converted_state_dict[layer_name]) else: raise ValueError(f"Layer {layer_name} is not presented in GGUF model") def test_starcoder2_weights_conversion_fp16(self): original_model = AutoModelForCausalLM.from_pretrained( self.starcoder2_original_model_id, device_map="auto", torch_dtype=torch.float16, ) converted_model = AutoModelForCausalLM.from_pretrained( self.starcoder2_fp16_model_id, gguf_file=self.fp16_starcoder2_gguf_model_id, device_map="auto", torch_dtype=torch.float16, ) converted_state_dict = converted_model.state_dict() original_state_dict = original_model.state_dict() for layer_name, original_params in original_state_dict.items(): if layer_name in converted_state_dict: self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) torch.testing.assert_close(original_params, converted_state_dict[layer_name]) else: raise ValueError(f"Layer {layer_name} is not presented in GGUF model") def test_starcoder2_q6_k(self): example_function_text = "def print_hello_world():" model = AutoModelForCausalLM.from_pretrained( self.starcoder2_model_id, gguf_file=self.q6_k_starcoder2_model_id, device_map="auto", torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained(self.starcoder2_model_id, gguf_file=self.q6_k_starcoder2_model_id) text = tokenizer(example_function_text, return_tensors="pt").to(torch_device) out = model.generate(**text, max_new_tokens=10) EXPECTED_TEXT = 'def print_hello_world():\n print("Hello World")\n\ndef print' self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_mamba_weights_conversion_fp16(self): original_model = AutoModelForCausalLM.from_pretrained( self.mamba_original_model_id, torch_dtype=torch.float16, ) converted_model = AutoModelForCausalLM.from_pretrained( self.mamba_model_id, gguf_file=self.fp16_mamba_model_id, torch_dtype=torch.float16, ) converted_state_dict = converted_model.state_dict() original_state_dict = original_model.state_dict() for layer_name, original_params in original_state_dict.items(): if layer_name in converted_state_dict: self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) if "mixer.A_log" in layer_name: # we should increase tolerance after exponential reversing # and performing np.log(-weights) operation as numbers are slightly different torch.testing.assert_close(original_params, converted_state_dict[layer_name], rtol=1e-3, atol=1e-3) else: torch.testing.assert_close(original_params, converted_state_dict[layer_name]) else: raise ValueError(f"Layer {layer_name} is not presented in GGUF model") def test_mamba_q6_k(self): model = AutoModelForCausalLM.from_pretrained( self.mamba_model_id, gguf_file=self.q6_k_mamba_model_id, torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained(self.mamba_model_id, gguf_file=self.q6_k_mamba_model_id) text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] out = model.generate(text, max_new_tokens=10) EXPECTED_TEXT = "Hello,I answerthe question.\n\nA" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_nemotron_weights_conversion_fp16(self): original_model = AutoModelForCausalLM.from_pretrained( self.nemotron_original_model_id, torch_dtype=torch.float16, ) converted_model = AutoModelForCausalLM.from_pretrained( self.nemotron_model_id, gguf_file=self.fp16_nemotron_model_id, torch_dtype=torch.float16, ) converted_state_dict = converted_model.state_dict() original_state_dict = original_model.state_dict() for layer_name, original_params in original_state_dict.items(): if layer_name in converted_state_dict: self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) torch.testing.assert_close(original_params, converted_state_dict[layer_name]) else: raise ValueError(f"Layer {layer_name} is not presented in GGUF model") def test_nemotron_q6_k(self): model = AutoModelForCausalLM.from_pretrained( self.nemotron_model_id, gguf_file=self.q6_k_nemotron_model_id, torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained(self.nemotron_model_id, gguf_file=self.q6_k_nemotron_model_id) text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] out = model.generate(text, max_new_tokens=16) EXPECTED_TEXT = "Hello.▁hotmail.com" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_gemma2_q3_k(self): model = AutoModelForCausalLM.from_pretrained( self.gemma2_model_id, gguf_file=self.q3_k_gemma2_model_id, torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.q3_k_gemma2_model_id) text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] out = model.generate(text, max_new_tokens=10) EXPECTED_TEXT = "Hello! 👋\n\nI'm trying to create a" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_gemma2_q8_0(self): model = AutoModelForCausalLM.from_pretrained( self.gemma2_model_id, gguf_file=self.q8_0_gemma2_model_id, torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.q8_0_gemma2_model_id) text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] out = model.generate(text, max_new_tokens=10) EXPECTED_TEXT = "Hello! 👋\n\nI'm a large language model" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) def test_gemma2_fp32(self): model = AutoModelForCausalLM.from_pretrained( self.gemma2_model_id, gguf_file=self.fp32_gemma2_model_id, torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.fp32_gemma2_model_id) text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] out = model.generate(text, max_new_tokens=10) EXPECTED_TEXT = "Hello! 👋\n\nI'm a large language model" self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) @require_read_token def test_gemma2_weights_conversion_fp32(self): original_model = AutoModelForCausalLM.from_pretrained( self.original_gemma2_model_id, torch_dtype=torch.float16, ) converted_model = AutoModelForCausalLM.from_pretrained( self.gemma2_model_id, gguf_file=self.fp32_gemma2_model_id, torch_dtype=torch.float16, ) converted_state_dict = converted_model.state_dict() original_state_dict = original_model.state_dict() for layer_name, original_params in original_state_dict.items(): if layer_name in converted_state_dict: self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) torch.testing.assert_close(original_params, converted_state_dict[layer_name]) else: raise ValueError(f"Layer {layer_name} is not presented in GGUF model") @require_read_token @unittest.skipUnless(is_gguf_available("0.16.0"), "test requires gguf version >= 0.16.0") def test_gemma3_qat_q4_0(self): model = AutoModelForCausalLM.from_pretrained( self.gemma3_qat_model_id, gguf_file=self.q4_0_gemma3_qat_model_id, torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained(self.gemma3_qat_model_id, gguf_file=self.q4_0_gemma3_qat_model_id) text = tokenizer(self.example_text, return_tensors="pt")["input_ids"] out = model.generate(text, max_new_tokens=10) EXPECTED_TEXT = 'Hello with the prompt, "What is the best way' self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT) @require_read_token @unittest.skipUnless(is_gguf_available("0.16.0"), "test requires gguf version >= 0.16.0") def test_gemma3_text_weights_conversion_bf16(self): original_model = AutoModelForCausalLM.from_pretrained( self.original_gemma3_text_model_id, torch_dtype=torch.float16, ) converted_model = AutoModelForCausalLM.from_pretrained( self.gemma3_text_model_id, gguf_file=self.bf16_gemma3_text_model_id, torch_dtype=torch.float16, ) converted_state_dict = converted_model.state_dict() original_state_dict = original_model.state_dict() for layer_name, original_params in original_state_dict.items(): if layer_name in converted_state_dict: self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) torch.testing.assert_close(original_params, converted_state_dict[layer_name]) else: raise ValueError(f"Layer {layer_name} is not presented in GGUF model") # Test text backbone conversion for gemma3 vision models @require_read_token @unittest.skipUnless(is_gguf_available("0.16.0"), "test requires gguf version >= 0.16.0") def test_gemma3_vision_weights_conversion_bf16(self): original_model = AutoModelForCausalLM.from_pretrained( self.original_gemma3_vision_model_id, torch_dtype=torch.float16, ).language_model converted_model = AutoModelForCausalLM.from_pretrained( self.gemma3_vision_model_id, gguf_file=self.bf16_gemma3_vision_model_id, torch_dtype=torch.float16, ) converted_state_dict = converted_model.state_dict() original_state_dict = original_model.state_dict() for layer_name, original_params in original_state_dict.items(): if layer_name in converted_state_dict: self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape) torch.testing.assert_close(original_params, converted_state_dict[layer_name]) else: raise ValueError(f"Layer {layer_name} is not presented in GGUF model")