mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 22:30:09 +06:00
![]() * Add MLflow integration class Add integration code for MLflow in integrations.py along with the code that checks that MLflow is installed. * Add MLflowCallback import Add import of MLflowCallback in trainer.py * Handle model argument Allow the callback to handle model argument and store model config items as hyperparameters. * Log parameters to MLflow in batches MLflow cannot log more than a hundred parameters at once. Code added to split the parameters into batches of 100 items and log the batches one by one. * Fix style * Add docs on MLflow callback * Fix issue with unfinished runs The "fluent" api used in MLflow integration allows only one run to be active at any given moment. If the Trainer is disposed off and a new one is created, but the training is not finished, it will refuse to log the results when the next trainer is created. * Add MLflow integration class Add integration code for MLflow in integrations.py along with the code that checks that MLflow is installed. * Add MLflowCallback import Add import of MLflowCallback in trainer.py * Handle model argument Allow the callback to handle model argument and store model config items as hyperparameters. * Log parameters to MLflow in batches MLflow cannot log more than a hundred parameters at once. Code added to split the parameters into batches of 100 items and log the batches one by one. * Fix style * Add docs on MLflow callback * Fix issue with unfinished runs The "fluent" api used in MLflow integration allows only one run to be active at any given moment. If the Trainer is disposed off and a new one is created, but the training is not finished, it will refuse to log the results when the next trainer is created. |
||
---|---|---|
.. | ||
callback.rst | ||
configuration.rst | ||
logging.rst | ||
model.rst | ||
optimizer_schedules.rst | ||
output.rst | ||
pipelines.rst | ||
processors.rst | ||
tokenizer.rst | ||
trainer.rst |