mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
fixed lots of typos. (#7758)
This commit is contained in:
parent
8cb4ecca25
commit
7e73c12805
@ -12,7 +12,7 @@ subclass :class:`~transformers.Trainer` and override the methods you need (see :
|
||||
|
||||
By default a :class:`~transformers.Trainer` will use the following callbacks:
|
||||
|
||||
- :class:`~transformers.DefaultFlowCallback` which handles the default beahvior for logging, saving and evaluation.
|
||||
- :class:`~transformers.DefaultFlowCallback` which handles the default behavior for logging, saving and evaluation.
|
||||
- :class:`~transformers.PrinterCallback` or :class:`~transformers.ProrgressCallback` to display progress and print the
|
||||
logs (the first one is used if you deactivate tqdm through the :class:`~transformers.TrainingArguments`, otherwise
|
||||
it's the second one).
|
||||
|
@ -15,7 +15,7 @@ Both :class:`~transformers.Trainer` and :class:`~transformers.TFTrainer` contain
|
||||
previous features. To inject custom behavior you can subclass them and override the following methods:
|
||||
|
||||
- **get_train_dataloader**/**get_train_tfdataset** -- Creates the training DataLoader (PyTorch) or TF Dataset.
|
||||
- **get_eval_dataloader**/**get_eval_tfdataset** -- Creates the evaulation DataLoader (PyTorch) or TF Dataset.
|
||||
- **get_eval_dataloader**/**get_eval_tfdataset** -- Creates the evaluation DataLoader (PyTorch) or TF Dataset.
|
||||
- **get_test_dataloader**/**get_test_tfdataset** -- Creates the test DataLoader (PyTorch) or TF Dataset.
|
||||
- **log** -- Logs information on the various objects watching training.
|
||||
- **create_optimizer_and_scheduler** -- Setups the optimizer and learning rate scheduler if they were not passed at
|
||||
|
@ -66,7 +66,7 @@ The library is built around three types of classes for each model:
|
||||
All these classes can be instantiated from pretrained instances and saved locally using two methods:
|
||||
|
||||
- :obj:`from_pretrained()` lets you instantiate a model/configuration/tokenizer from a pretrained version either
|
||||
provided by the library itself (the suported models are provided in the list :doc:`here <pretrained_models>`
|
||||
provided by the library itself (the supported models are provided in the list :doc:`here <pretrained_models>`
|
||||
or stored locally (or on a server) by the user,
|
||||
- :obj:`save_pretrained()` lets you save a model/configuration/tokenizer locally so that it can be reloaded using
|
||||
:obj:`from_pretrained()`.
|
||||
|
@ -39,7 +39,7 @@ python run_summarization.py \
|
||||
--compute_rouge true
|
||||
```
|
||||
|
||||
The scripts executes on GPU if one is available and if `no_cuda` is not set to `true`. Inference on multiple GPUs is not suported yet. The ROUGE scores will be displayed in the console at the end of evaluation and written in a `rouge_scores.txt` file. The script takes 30 hours to compute with a single Tesla V100 GPU and a batch size of 10 (300,000 texts to summarize).
|
||||
The scripts executes on GPU if one is available and if `no_cuda` is not set to `true`. Inference on multiple GPUs is not supported yet. The ROUGE scores will be displayed in the console at the end of evaluation and written in a `rouge_scores.txt` file. The script takes 30 hours to compute with a single Tesla V100 GPU and a batch size of 10 (300,000 texts to summarize).
|
||||
|
||||
## Summarize any text
|
||||
|
||||
|
@ -31,7 +31,7 @@ class MMBTConfig(object):
|
||||
Config of the underlying Transformer models. Its values are copied over to use a single config.
|
||||
num_labels (:obj:`int`, `optional`):
|
||||
Size of final Linear layer for classification.
|
||||
modal_hidden_size (:obj:`int`, `optional`, defautls to 2048):
|
||||
modal_hidden_size (:obj:`int`, `optional`, defaults to 2048):
|
||||
Embedding dimension of the non-text modality encoder.
|
||||
"""
|
||||
|
||||
|
@ -274,7 +274,7 @@ class PretrainedConfig(object):
|
||||
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
||||
standard cache should not be used.
|
||||
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Wheter or not to force to (re-)download the configuration files and override the cached versions if they
|
||||
Whether or not to force to (re-)download the configuration files and override the cached versions if they
|
||||
exist.
|
||||
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
|
||||
|
@ -211,7 +211,7 @@ def load_graph_from_args(pipeline_name: str, framework: str, model: str, tokeniz
|
||||
pipeline_name: The kind of pipeline to use (ner, question-answering, etc.)
|
||||
framework: The actual model to convert the pipeline from ("pt" or "tf")
|
||||
model: The model name which will be loaded by the pipeline
|
||||
tokenizer: The tokenizer name which will be loaded by the pipeline, defaut to the model's value
|
||||
tokenizer: The tokenizer name which will be loaded by the pipeline, default to the model's value
|
||||
|
||||
Returns: Pipeline object
|
||||
|
||||
|
@ -560,7 +560,7 @@ class SquadProcessor(DataProcessor):
|
||||
|
||||
Args:
|
||||
dataset: The tfds dataset loaded from `tensorflow_datasets.load("squad")`
|
||||
evaluate: boolean specifying if in evaluation mode or in training mode
|
||||
evaluate: Boolean specifying if in evaluation mode or in training mode
|
||||
|
||||
Returns:
|
||||
List of SquadExample
|
||||
|
@ -1093,7 +1093,7 @@ def is_tensor(x):
|
||||
class ModelOutput(OrderedDict):
|
||||
"""
|
||||
Base class for all model outputs as dataclass. Has a ``__getitem__`` that allows indexing by integer or slice (like
|
||||
a tuple) or strings (like a dictionnary) that will ignore the ``None`` attributes. Otherwise behaves like a
|
||||
a tuple) or strings (like a dictionary) that will ignore the ``None`` attributes. Otherwise behaves like a
|
||||
regular python dictionary.
|
||||
|
||||
.. warning::
|
||||
|
@ -197,7 +197,7 @@ class TensorBoardCallback(TrainerCallback):
|
||||
|
||||
Args:
|
||||
tb_writer (:obj:`SummaryWriter`, `optional`):
|
||||
The writer to use. Will instatiate one if not set.
|
||||
The writer to use. Will instantiate one if not set.
|
||||
"""
|
||||
|
||||
def __init__(self, tb_writer=None):
|
||||
|
@ -507,7 +507,7 @@ AUTO_MODEL_PRETRAINED_DOCSTRING = r"""
|
||||
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each
|
||||
request.
|
||||
output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error
|
||||
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error
|
||||
messages.
|
||||
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not to only look at local files (e.g., not try doanloading the model).
|
||||
|
@ -390,7 +390,7 @@ TF_AUTO_MODEL_PRETRAINED_DOCSTRING = r"""
|
||||
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each
|
||||
request.
|
||||
output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error
|
||||
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error
|
||||
messages.
|
||||
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not to only look at local files (e.g., not try doanloading the model).
|
||||
|
@ -569,7 +569,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin):
|
||||
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each
|
||||
request.
|
||||
output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error
|
||||
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error
|
||||
messages.
|
||||
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not to only look at local files (e.g., not try doanloading the model).
|
||||
|
@ -802,7 +802,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin):
|
||||
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each
|
||||
request.
|
||||
output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error
|
||||
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error
|
||||
messages.
|
||||
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not to only look at local files (e.g., not try doanloading the model).
|
||||
|
@ -169,7 +169,7 @@ class AdamWeightDecay(tf.keras.optimizers.Adam):
|
||||
epsilon (:obj:`float`, `optional`, defaults to 1e-7):
|
||||
The epsilon paramenter in Adam, which is a small constant for numerical stability.
|
||||
amsgrad (:obj:`bool`, `optional`, default to `False`):
|
||||
Wheter to apply AMSGrad varient of this algorithm or not, see
|
||||
Whether to apply AMSGrad varient of this algorithm or not, see
|
||||
`On the Convergence of Adam and Beyond <https://arxiv.org/abs/1904.09237>`__.
|
||||
weight_decay_rate (:obj:`float`, `optional`, defaults to 0):
|
||||
The weight decay to apply.
|
||||
|
@ -1766,7 +1766,7 @@ class QuestionAnsweringPipeline(Pipeline):
|
||||
|
||||
def decode(self, start: np.ndarray, end: np.ndarray, topk: int, max_answer_len: int) -> Tuple:
|
||||
"""
|
||||
Take the output of any :obj:`ModelForQuestionAnswering` and will generate probalities for each span to be
|
||||
Take the output of any :obj:`ModelForQuestionAnswering` and will generate probabilities for each span to be
|
||||
the actual answer.
|
||||
|
||||
In addition, it filters out some unwanted/impossible cases like answer len being greater than
|
||||
@ -1807,7 +1807,7 @@ class QuestionAnsweringPipeline(Pipeline):
|
||||
|
||||
def span_to_answer(self, text: str, start: int, end: int) -> Dict[str, Union[str, int]]:
|
||||
"""
|
||||
When decoding from token probalities, this method maps token indexes to actual word in
|
||||
When decoding from token probabilities, this method maps token indexes to actual word in
|
||||
the initial context.
|
||||
|
||||
Args:
|
||||
|
@ -682,7 +682,7 @@ class PreTrainedTokenizer(PreTrainedTokenizerBase):
|
||||
token_ids_1 (:obj:`List[int]`, `optional`):
|
||||
List of ids of the second sequence.
|
||||
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Wheter or not the token list is already formated with special tokens for the model.
|
||||
Whether or not the token list is already formated with special tokens for the model.
|
||||
|
||||
Returns:
|
||||
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
@ -815,7 +815,7 @@ class PreTrainedTokenizer(PreTrainedTokenizerBase):
|
||||
you want to reload it using the :meth:`~transformers.PreTrainedTokenizer.from_pretrained` class method.
|
||||
|
||||
Args:
|
||||
save_directory (:obj:`str`): The path to adirectory where the tokenizer will be saved.
|
||||
save_directory (:obj:`str`): The path to a directory where the tokenizer will be saved.
|
||||
|
||||
Returns:
|
||||
A tuple of :obj:`str`: The files saved.
|
||||
|
@ -15,7 +15,7 @@
|
||||
""" Base classes common to both the slow and the fast tokenization classes:
|
||||
PreTrainedTokenizerBase (host all the user fronting encoding methodes)
|
||||
Special token mixing (host the special tokens logic) and
|
||||
BatchEncoding (wrap the dictionnary of output with special method for the Fast tokenizers)
|
||||
BatchEncoding (wrap the dictionary of output with special method for the Fast tokenizers)
|
||||
"""
|
||||
|
||||
import copy
|
||||
@ -249,7 +249,7 @@ class BatchEncoding(UserDict):
|
||||
|
||||
def tokens(self, batch_index: int = 0) -> List[str]:
|
||||
"""
|
||||
Return the list of tokens (sub-parts of the input strings after word/subword splitting and before converstion
|
||||
Return the list of tokens (sub-parts of the input strings after word/subword splitting and before conversion
|
||||
to integer indices) at a given batch index (only works for the output of a fast tokenizer).
|
||||
|
||||
Args:
|
||||
@ -1121,7 +1121,7 @@ ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
|
||||
return_overflowing_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not to return overflowing token sequences.
|
||||
return_special_tokens_mask (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Wheter or not to return special tokens mask information.
|
||||
Whether or not to return special tokens mask information.
|
||||
return_offsets_mapping (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not to return :obj:`(char_start, char_end)` for each token.
|
||||
|
||||
@ -1153,13 +1153,13 @@ ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
|
||||
- **num_truncated_tokens** -- Number of tokens truncated (when a :obj:`max_length` is specified and
|
||||
:obj:`return_overflowing_tokens=True`).
|
||||
- **special_tokens_mask** -- List of 0s and 1s, with 0 specifying added special tokens and 1 specifying
|
||||
regual sequence tokens (when :obj:`add_special_tokens=True` and :obj:`return_special_tokens_mask=True`).
|
||||
regular sequence tokens (when :obj:`add_special_tokens=True` and :obj:`return_special_tokens_mask=True`).
|
||||
- **length** -- The length of the inputs (when :obj:`return_length=True`)
|
||||
"""
|
||||
|
||||
INIT_TOKENIZER_DOCSTRING = r"""
|
||||
Class attributes (overridden by derived classes)
|
||||
- **vocab_files_names** (:obj:`Dict[str, str]`) -- A ditionary with, as keys, the ``__init__`` keyword name of
|
||||
- **vocab_files_names** (:obj:`Dict[str, str]`) -- A dictionary with, as keys, the ``__init__`` keyword name of
|
||||
each vocabulary file required by the model, and as associated values, the filename for saving the associated
|
||||
file (string).
|
||||
- **pretrained_vocab_files_map** (:obj:`Dict[str, Dict[str, str]]`) -- A dictionary of dictionaries, with the
|
||||
@ -1170,7 +1170,7 @@ INIT_TOKENIZER_DOCSTRING = r"""
|
||||
:obj:`short-cut-names` of the pretrained models, and as associated values, the maximum length of the sequence
|
||||
inputs of this model, or :obj:`None` if the model has no maximum input size.
|
||||
- **pretrained_init_configuration** (:obj:`Dict[str, Dict[str, Any]]`) -- A dictionary with, as keys, the
|
||||
:obj:`short-cut-names` of the pretrained models, and as associated values, a dictionnary of specific
|
||||
:obj:`short-cut-names` of the pretrained models, and as associated values, a dictionary of specific
|
||||
arguments to pass to the ``__init__`` method of the tokenizer class for this pretrained model when loading the
|
||||
tokenizer with the :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`
|
||||
method.
|
||||
@ -1688,7 +1688,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
|
||||
modifying :obj:`tokenizer.do_lower_case` after creation).
|
||||
|
||||
Args:
|
||||
save_directory (:obj:`str`): The path to adirectory where the tokenizer will be saved.
|
||||
save_directory (:obj:`str`): The path to a directory where the tokenizer will be saved.
|
||||
|
||||
Returns:
|
||||
A tuple of :obj:`str`: The files saved.
|
||||
@ -2383,7 +2383,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
|
||||
batch_size = len(encoded_inputs["input_ids"])
|
||||
assert all(
|
||||
len(v) == batch_size for v in encoded_inputs.values()
|
||||
), "Some items in the output dictionnary have a different batch size than others."
|
||||
), "Some items in the output dictionary have a different batch size than others."
|
||||
|
||||
if padding_strategy == PaddingStrategy.LONGEST:
|
||||
max_length = max(len(inputs) for inputs in encoded_inputs["input_ids"])
|
||||
@ -2547,7 +2547,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
|
||||
sequence = ids + pair_ids if pair else ids
|
||||
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
|
||||
|
||||
# Build output dictionnary
|
||||
# Build output dictionary
|
||||
encoded_inputs["input_ids"] = sequence
|
||||
if return_token_type_ids:
|
||||
encoded_inputs["token_type_ids"] = token_type_ids
|
||||
@ -2819,7 +2819,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
|
||||
token_ids_1 (:obj:`List[int]`, `optional`):
|
||||
List of ids of the second sequence.
|
||||
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Wheter or not the token list is already formated with special tokens for the model.
|
||||
Whether or not the token list is already formated with special tokens for the model.
|
||||
|
||||
Returns:
|
||||
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
|
@ -552,7 +552,7 @@ class PreTrainedTokenizerFast(PreTrainedTokenizerBase):
|
||||
you want to reload it using the :meth:`~transformers.PreTrainedTokenizerFast.from_pretrained` class method.
|
||||
|
||||
Args:
|
||||
save_directory (:obj:`str`): The path to adirectory where the tokenizer will be saved.
|
||||
save_directory (:obj:`str`): The path to a directory where the tokenizer will be saved.
|
||||
|
||||
Returns:
|
||||
A tuple of :obj:`str`: The files saved.
|
||||
|
@ -895,7 +895,7 @@ class Trainer:
|
||||
- the documentation of `tune.run <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__
|
||||
|
||||
Returns:
|
||||
:class:`transformers.trainer_utils.BestRun`: All the informations about the best run.
|
||||
:class:`transformers.trainer_utils.BestRun`: All the information about the best run.
|
||||
"""
|
||||
if backend is None:
|
||||
backend = default_hp_search_backend()
|
||||
|
@ -94,7 +94,7 @@ class TrainingArguments:
|
||||
logging_dir (:obj:`str`, `optional`):
|
||||
Tensorboard log directory. Will default to `runs/**CURRENT_DATETIME_HOSTNAME**`.
|
||||
logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Wheter to log and evalulate the first :obj:`global_step` or not.
|
||||
Whether to log and evaluate the first :obj:`global_step` or not.
|
||||
logging_steps (:obj:`int`, `optional`, defaults to 500):
|
||||
Number of update steps between two logs.
|
||||
save_steps (:obj:`int`, `optional`, defaults to 500):
|
||||
@ -114,7 +114,7 @@ class TrainingArguments:
|
||||
local_rank (:obj:`int`, `optional`, defaults to -1):
|
||||
During distributed training, the rank of the process.
|
||||
tpu_num_cores (:obj:`int`, `optional`):
|
||||
When training on TPU, the mumber of TPU cores (automatically passed by launcher script).
|
||||
When training on TPU, the number of TPU cores (automatically passed by launcher script).
|
||||
debug (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
When training on TPU, whether to print debug metrics or not.
|
||||
dataloader_drop_last (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
@ -159,7 +159,7 @@ class TrainingArguments:
|
||||
Will default to :obj:`"loss"` if unspecified and :obj:`load_best_model_at_end=True` (to use the evaluation
|
||||
loss).
|
||||
|
||||
If you set this value, :obj:`greater_is_better` will defaut to :obj:`True`. Don't forget to set it to
|
||||
If you set this value, :obj:`greater_is_better` will default to :obj:`True`. Don't forget to set it to
|
||||
:obj:`False` if your metric is better when lower.
|
||||
greater_is_better (:obj:`bool`, `optional`)
|
||||
Use in conjunction with :obj:`load_best_model_at_end` and :obj:`metric_for_best_model` to specify if better
|
||||
|
@ -66,7 +66,7 @@ class TFTrainingArguments(TrainingArguments):
|
||||
logging_dir (:obj:`str`, `optional`):
|
||||
Tensorboard log directory. Will default to `runs/**CURRENT_DATETIME_HOSTNAME**`.
|
||||
logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Wheter to log and evalulate the first :obj:`global_step` or not.
|
||||
Whether to log and evaluate the first :obj:`global_step` or not.
|
||||
logging_steps (:obj:`int`, `optional`, defaults to 500):
|
||||
Number of update steps between two logs.
|
||||
save_steps (:obj:`int`, `optional`, defaults to 500):
|
||||
@ -86,7 +86,7 @@ class TFTrainingArguments(TrainingArguments):
|
||||
local_rank (:obj:`int`, `optional`, defaults to -1):
|
||||
During distributed training, the rank of the process.
|
||||
tpu_num_cores (:obj:`int`, `optional`):
|
||||
When training on TPU, the mumber of TPU cores (automatically passed by launcher script).
|
||||
When training on TPU, the number of TPU cores (automatically passed by launcher script).
|
||||
debug (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether to activate the trace to record computation graphs and profiling information or not.
|
||||
dataloader_drop_last (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
|
Loading…
Reference in New Issue
Block a user