mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00
1026 lines
47 KiB
Python
1026 lines
47 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch XLNet model.
|
|
"""
|
|
from __future__ import (absolute_import, division, print_function,
|
|
unicode_literals)
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import copy
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import sys
|
|
from io import open
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss
|
|
|
|
from .file_utils import cached_path, WEIGHTS_NAME, CONFIG_NAME
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
PRETRAINED_MODEL_ARCHIVE_MAP = {
|
|
'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
|
|
}
|
|
PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
|
|
}
|
|
XLNET_CONFIG_NAME = 'xlnet_config.json'
|
|
TF_WEIGHTS_NAME = 'model.ckpt'
|
|
|
|
def load_tf_weights_in_xlnet(model, tf_checkpoint_path):
|
|
""" Load tf checkpoints in a pytorch model
|
|
"""
|
|
try:
|
|
import re
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
except ImportError:
|
|
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
|
|
"https://www.tensorflow.org/install/ for installation instructions.")
|
|
raise
|
|
tf_path = os.path.abspath(tf_checkpoint_path)
|
|
print("Converting TensorFlow checkpoint from {}".format(tf_path))
|
|
# Load weights from TF model
|
|
init_vars = tf.train.list_variables(tf_path)
|
|
names = []
|
|
arrays = []
|
|
for name, shape in init_vars:
|
|
print("Loading TF weight {} with shape {}".format(name, shape))
|
|
array = tf.train.load_variable(tf_path, name)
|
|
names.append(name)
|
|
arrays.append(array)
|
|
|
|
for name, array in zip(names, arrays):
|
|
name = name.split('/')
|
|
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
|
# which are not required for using pretrained model
|
|
if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
|
|
print("Skipping {}".format("/".join(name)))
|
|
continue
|
|
pointer = model
|
|
for m_name in name:
|
|
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
|
|
l = re.split(r'_(\d+)', m_name)
|
|
else:
|
|
l = [m_name]
|
|
if l[0] == 'kernel' or l[0] == 'gamma':
|
|
pointer = getattr(pointer, 'weight')
|
|
elif l[0] == 'output_bias' or l[0] == 'beta':
|
|
pointer = getattr(pointer, 'bias')
|
|
elif l[0] == 'output_weights':
|
|
pointer = getattr(pointer, 'weight')
|
|
elif l[0] == 'squad':
|
|
pointer = getattr(pointer, 'classifier')
|
|
else:
|
|
try:
|
|
pointer = getattr(pointer, l[0])
|
|
except AttributeError:
|
|
print("Skipping {}".format("/".join(name)))
|
|
continue
|
|
if len(l) >= 2:
|
|
num = int(l[1])
|
|
pointer = pointer[num]
|
|
if m_name[-11:] == '_embeddings':
|
|
pointer = getattr(pointer, 'weight')
|
|
elif m_name == 'kernel':
|
|
array = np.transpose(array)
|
|
try:
|
|
assert pointer.shape == array.shape
|
|
except AssertionError as e:
|
|
e.args += (pointer.shape, array.shape)
|
|
raise
|
|
print("Initialize PyTorch weight {}".format(name))
|
|
pointer.data = torch.from_numpy(array)
|
|
return model
|
|
|
|
|
|
def gelu(x):
|
|
"""Implementation of the gelu activation function.
|
|
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
|
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
|
Also see https://arxiv.org/abs/1606.08415
|
|
"""
|
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
|
|
|
|
|
def swish(x):
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
|
|
|
|
def positional_embedding(pos_seq, inv_freq, bsz=None):
|
|
sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
|
|
pos_emb = torch.cat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
|
|
pos_emb = pos_emb[:, None, :]
|
|
|
|
if bsz is not None:
|
|
pos_emb = pos_emb.expand(1, bsz, 1)
|
|
|
|
return pos_emb
|
|
|
|
class XLNetBaseConfig(object):
|
|
@classmethod
|
|
def from_dict(cls, json_object):
|
|
"""Constructs a `XLNetConfig` from a Python dictionary of parameters."""
|
|
config = XLNetConfig(vocab_size_or_config_json_file=-1)
|
|
for key, value in json_object.items():
|
|
config.__dict__[key] = value
|
|
return config
|
|
|
|
@classmethod
|
|
def from_json_file(cls, json_file):
|
|
"""Constructs a `XLNetConfig` from a json file of parameters."""
|
|
with open(json_file, "r", encoding='utf-8') as reader:
|
|
text = reader.read()
|
|
return cls.from_dict(json.loads(text))
|
|
|
|
def __repr__(self):
|
|
return str(self.to_json_string())
|
|
|
|
def to_dict(self):
|
|
"""Serializes this instance to a Python dictionary."""
|
|
output = copy.deepcopy(self.__dict__)
|
|
return output
|
|
|
|
def to_json_string(self):
|
|
"""Serializes this instance to a JSON string."""
|
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
|
|
|
def to_json_file(self, json_file_path):
|
|
""" Save this instance to a json file."""
|
|
with open(json_file_path, "w", encoding='utf-8') as writer:
|
|
writer.write(self.to_json_string())
|
|
|
|
|
|
class XLNetConfig(XLNetBaseConfig):
|
|
"""Configuration class to store the configuration of a `XLNetModel`.
|
|
"""
|
|
def __init__(self,
|
|
vocab_size_or_config_json_file,
|
|
d_model=1024,
|
|
n_layer=24,
|
|
n_head=16,
|
|
d_inner=4096,
|
|
ff_activation="gelu",
|
|
untie_r=True,
|
|
|
|
max_position_embeddings=512,
|
|
initializer_range=0.02,
|
|
layer_norm_eps=1e-12):
|
|
"""Constructs XLNetConfig.
|
|
|
|
Args:
|
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLNetModel`.
|
|
d_model: Size of the encoder layers and the pooler layer.
|
|
n_layer: Number of hidden layers in the Transformer encoder.
|
|
n_head: Number of attention heads for each attention layer in
|
|
the Transformer encoder.
|
|
d_inner: The size of the "intermediate" (i.e., feed-forward)
|
|
layer in the Transformer encoder.
|
|
ff_activation: The non-linear activation function (function or string) in the
|
|
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
|
|
untie_r: untie relative position biases
|
|
|
|
dropout: The dropout probabilitiy for all fully connected
|
|
layers in the embeddings, encoder, and pooler.
|
|
dropatt: The dropout ratio for the attention
|
|
probabilities.
|
|
max_position_embeddings: The maximum sequence length that this model might
|
|
ever be used with. Typically set this to something large just in case
|
|
(e.g., 512 or 1024 or 2048).
|
|
initializer_range: The sttdev of the truncated_normal_initializer for
|
|
initializing all weight matrices.
|
|
layer_norm_eps: The epsilon used by LayerNorm.
|
|
"""
|
|
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
|
|
and isinstance(vocab_size_or_config_json_file, unicode)):
|
|
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
|
|
json_config = json.loads(reader.read())
|
|
for key, value in json_config.items():
|
|
self.__dict__[key] = value
|
|
elif isinstance(vocab_size_or_config_json_file, int):
|
|
self.vocab_size = vocab_size_or_config_json_file
|
|
self.d_model = d_model
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
assert d_model % n_head == 0
|
|
self.d_head = d_model // n_head
|
|
self.ff_activation = ff_activation
|
|
self.d_inner = d_inner
|
|
self.untie_r = untie_r
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.layer_norm_eps = layer_norm_eps
|
|
else:
|
|
raise ValueError("First argument must be either a vocabulary size (int)"
|
|
"or the path to a pretrained model config file (str)")
|
|
|
|
|
|
class XLNetRunConfig(XLNetBaseConfig):
|
|
"""XLNetRunConfig contains hyperparameters that could be different
|
|
between pretraining and finetuning.
|
|
These hyperparameters can also be changed from run to run.
|
|
We store them separately from XLNetConfig for flexibility.
|
|
"""
|
|
def __init__(self,
|
|
dropout=0.1,
|
|
dropatt=0.1,
|
|
init="normal",
|
|
init_range=0.1,
|
|
init_std=0.02,
|
|
mem_len=None,
|
|
reuse_len=None,
|
|
bi_data=False,
|
|
clamp_len=-1,
|
|
same_length=False):
|
|
"""
|
|
Args:
|
|
dropout: float, dropout rate.
|
|
dropatt: float, dropout rate on attention probabilities.
|
|
init: str, the initialization scheme, either "normal" or "uniform".
|
|
init_range: float, initialize the parameters with a uniform distribution
|
|
in [-init_range, init_range]. Only effective when init="uniform".
|
|
init_std: float, initialize the parameters with a normal distribution
|
|
with mean 0 and stddev init_std. Only effective when init="normal".
|
|
mem_len: int, the number of tokens to cache.
|
|
reuse_len: int, the number of tokens in the currect batch to be cached
|
|
and reused in the future.
|
|
bi_data: bool, whether to use bidirectional input pipeline.
|
|
Usually set to True during pretraining and False during finetuning.
|
|
clamp_len: int, clamp all relative distances larger than clamp_len.
|
|
-1 means no clamping.
|
|
same_length: bool, whether to use the same attention length for each token.
|
|
"""
|
|
|
|
self.init = init
|
|
self.init_range = init_range
|
|
self.init_std = init_std
|
|
self.dropout = dropout
|
|
self.dropatt = dropatt
|
|
self.mem_len = mem_len
|
|
self.reuse_len = reuse_len
|
|
self.bi_data = bi_data
|
|
self.clamp_len = clamp_len
|
|
self.same_length = same_length
|
|
|
|
try:
|
|
from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
|
|
except ImportError:
|
|
logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
|
|
class XLNetLayerNorm(nn.Module):
|
|
def __init__(self, d_model, eps=1e-12):
|
|
"""Construct a layernorm module in the TF style (epsilon inside the square root).
|
|
"""
|
|
super(XLNetLayerNorm, self).__init__()
|
|
self.weight = nn.Parameter(torch.ones(d_model))
|
|
self.bias = nn.Parameter(torch.zeros(d_model))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, x):
|
|
u = x.mean(-1, keepdim=True)
|
|
s = (x - u).pow(2).mean(-1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
|
return self.weight * x + self.bias
|
|
|
|
class XLNetRelativeAttention(nn.Module):
|
|
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
|
super(XLNetRelativeAttention, self).__init__()
|
|
self.output_attentions = output_attentions
|
|
if config.d_model % config.num_attention_heads != 0:
|
|
raise ValueError(
|
|
"The hidden size (%d) is not a multiple of the number of attention "
|
|
"heads (%d)" % (config.d_model, config.num_attention_heads))
|
|
self.output_attentions = output_attentions
|
|
self.keep_multihead_output = keep_multihead_output
|
|
self.multihead_output = None
|
|
|
|
self.n_head = config.num_attention_heads
|
|
self.d_head = config.d_head
|
|
self.d_model = config.d_model
|
|
self.scale = 1 / (config.d_head ** 0.5)
|
|
|
|
self.q = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
|
|
self.k = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
|
|
self.v = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
|
|
self.o = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
|
|
self.r = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
|
|
|
|
self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
|
|
self.r_s_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
|
|
self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
|
|
self.seg_embed = nn.Parameter(torch.Tensor(self.n_head, 2, self.d_head))
|
|
|
|
self.LayerNorm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
def prune_heads(self, heads):
|
|
raise NotImplementedError
|
|
|
|
def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None):
|
|
"""Core relative positional attention operations."""
|
|
|
|
# content based attention score
|
|
ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)
|
|
|
|
# position based attention score
|
|
bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
|
|
bd = rel_shift(bd, klen=torch.shape(ac)[1])
|
|
|
|
# segment based attention score
|
|
if seg_mat is None:
|
|
ef = 0
|
|
else:
|
|
ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
|
|
ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)
|
|
|
|
# merge attention scores and perform masking
|
|
attn_score = (ac + bd + ef) * self.scale
|
|
if attn_mask is not None:
|
|
# attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
|
|
attn_score = attn_score - 1e30 * attn_mask
|
|
|
|
# attention probability
|
|
attn_prob = F.softmax(attn_score, dim=1)
|
|
attn_prob = self.dropout(attn_prob)
|
|
|
|
# attention output
|
|
attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)
|
|
|
|
return attn_vec
|
|
|
|
def post_attention(self, h, attn_vec, residual=True):
|
|
"""Post-attention processing."""
|
|
# post-attention projection (back to `d_model`)
|
|
attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)
|
|
|
|
attn_out = self.dropout(attn_out)
|
|
if residual:
|
|
attn_out = attn_out + h
|
|
output = self.LayerNorm(attn_out)
|
|
|
|
return output
|
|
|
|
def forward(self, h, g,
|
|
attn_mask_h, attn_mask_g,
|
|
r, seg_mat,
|
|
mems=None, target_mapping=None, head_mask=None):
|
|
if g is not None:
|
|
###### Two-stream attention with relative positional encoding.
|
|
# content based attention score
|
|
if mems is not None and mems.dim() > 1:
|
|
cat = torch.cat([mems, h], dim=0)
|
|
else:
|
|
cat = h
|
|
|
|
# content-based key head
|
|
k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
|
|
|
|
# content-based value head
|
|
v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)
|
|
|
|
# position-based key head
|
|
k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)
|
|
|
|
##### h-stream
|
|
# content-stream query head
|
|
q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
|
|
|
|
# core attention ops
|
|
attn_vec_h = self.rel_attn_core(
|
|
q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)
|
|
|
|
# post processing
|
|
output_h = self.post_attention(h, attn_vec_h)
|
|
|
|
##### g-stream
|
|
# query-stream query head
|
|
q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)
|
|
|
|
# core attention ops
|
|
if target_mapping is not None:
|
|
q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
|
|
attn_vec_g = self.rel_attn_core(
|
|
q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)
|
|
attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
|
|
else:
|
|
attn_vec_g = self.rel_attn_core(
|
|
q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)
|
|
|
|
# post processing
|
|
output_g = self.post_attention(g, attn_vec_g)
|
|
attention_output = output_h, output_g
|
|
else:
|
|
###### Multi-head attention with relative positional encoding
|
|
if mems is not None and mems.dim() > 1:
|
|
cat = torch.cat([mems, h], dim=0)
|
|
else:
|
|
cat = h
|
|
|
|
# content heads
|
|
q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
|
|
k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
|
|
v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)
|
|
|
|
# positional heads
|
|
k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)
|
|
|
|
# core attention ops
|
|
attn_vec = self.rel_attn_core(
|
|
q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)
|
|
|
|
# post processing
|
|
attention_output = self.post_attention(h, attn_vec)
|
|
|
|
|
|
# Mask heads if we want to
|
|
# if head_mask is not None:
|
|
# attention_probs = attention_probs * head_mask
|
|
|
|
# context_layer = torch.matmul(attention_probs, value_layer)
|
|
# if self.keep_multihead_output:
|
|
# self.multihead_output = context_layer
|
|
# self.multihead_output.retain_grad()
|
|
|
|
# context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
# new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
|
# context_layer = context_layer.view(*new_context_layer_shape)
|
|
|
|
# if self.output_attentions:
|
|
# attentions, self_output = self_output
|
|
# if self.output_attentions:
|
|
# return attentions, attention_output
|
|
return attention_output
|
|
|
|
class XLNetFeedForward(nn.Module):
|
|
def __init__(self, config):
|
|
super(XLNetFeedForward, self).__init__()
|
|
self.LayerNorm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
|
|
self.layer_1 = nn.Linear(config.d_model, config.d_inner)
|
|
self.layer_2 = nn.Linear(config.d_inner, config.d_model)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
if isinstance(config.ff_activation, str) or (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
|
|
self.activation_function = ACT2FN[config.ff_activation]
|
|
else:
|
|
self.activation_function = config.ff_activation
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
hidden_states = self.layer_1(hidden_states)
|
|
hidden_states = self.activation_function(hidden_states)
|
|
hidden_states = self.layer_2(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
class XLNetLayer(nn.Module):
|
|
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
|
super(XLNetLayer, self).__init__()
|
|
self.output_attentions = output_attentions
|
|
self.rel_attn = XLNetRelativeAttention(config, output_attentions=output_attentions,
|
|
keep_multihead_output=keep_multihead_output)
|
|
self.ff = XLNetFeedForward(config)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
def forward(self, output_h, output_g,
|
|
attn_mask_h, attn_mask_g,
|
|
r, seg_mat, r, seg_mat,
|
|
two_streams=False, mems=None, target_mapping=None, head_mask=None):
|
|
output_h, output_g = self.rel_attn(output_h, output_g,
|
|
attn_mask_h, attn_mask_g,
|
|
r, seg_mat,
|
|
mems=mems, target_mapping=target_mapping, head_mask=head_mask)
|
|
if two_streams:
|
|
output_g = self.ff(output_g)
|
|
output_h = self.ff(output_h)
|
|
|
|
# if self.output_attentions:
|
|
# return attentions, layer_output
|
|
return output_h, output_g
|
|
|
|
class XLNetPreTrainedModel(nn.Module):
|
|
""" An abstract class to handle weights initialization and
|
|
a simple interface for dowloading and loading pretrained models.
|
|
"""
|
|
def __init__(self, config, *inputs, **kwargs):
|
|
super(XLNetPreTrainedModel, self).__init__()
|
|
if not isinstance(config, XLNetConfig):
|
|
raise ValueError(
|
|
"Parameter config in `{}(config)` should be an instance of class `XLNetConfig`. "
|
|
"To create a model from a Google pretrained model use "
|
|
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
|
self.__class__.__name__, self.__class__.__name__
|
|
))
|
|
self.config = config
|
|
|
|
def init_xlnet_weights(self, module):
|
|
""" Initialize the weights.
|
|
"""
|
|
if isinstance(module, (nn.Linear, nn.Embedding)):
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
elif isinstance(module, XLNetLayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
|
module.bias.data.zero_()
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
|
|
"""
|
|
Instantiate a XLNetPreTrainedModel from a pre-trained model file or a pytorch state dict.
|
|
Download and cache the pre-trained model file if needed.
|
|
|
|
Params:
|
|
pretrained_model_name_or_path: either:
|
|
- a str with the name of a pre-trained model to load selected in the list of:
|
|
. `xlnet-large-cased`
|
|
- a path or url to a pretrained model archive containing:
|
|
. `xlnet_config.json` a configuration file for the model
|
|
. `pytorch_model.bin` a PyTorch dump of a XLNetForPreTraining instance
|
|
- a path or url to a pretrained model archive containing:
|
|
. `xlnet_config.json` a configuration file for the model
|
|
. `model.chkpt` a TensorFlow checkpoint
|
|
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
|
|
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
|
|
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
|
|
*inputs, **kwargs: additional input for the specific XLNet class
|
|
(ex: num_labels for XLNetForSequenceClassification)
|
|
"""
|
|
state_dict = kwargs.get('state_dict', None)
|
|
kwargs.pop('state_dict', None)
|
|
cache_dir = kwargs.get('cache_dir', None)
|
|
kwargs.pop('cache_dir', None)
|
|
from_tf = kwargs.get('from_tf', False)
|
|
kwargs.pop('from_tf', None)
|
|
|
|
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
|
|
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
|
|
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
|
|
else:
|
|
if from_tf:
|
|
# Directly load from a TensorFlow checkpoint
|
|
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME)
|
|
config_file = os.path.join(pretrained_model_name_or_path, XLNET_CONFIG_NAME)
|
|
else:
|
|
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
|
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
|
|
# redirect to the cache, if necessary
|
|
try:
|
|
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
|
|
except EnvironmentError:
|
|
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
|
|
logger.error(
|
|
"Couldn't reach server at '{}' to download pretrained weights.".format(
|
|
archive_file))
|
|
else:
|
|
logger.error(
|
|
"Model name '{}' was not found in model name list ({}). "
|
|
"We assumed '{}' was a path or url but couldn't find any file "
|
|
"associated to this path or url.".format(
|
|
pretrained_model_name_or_path,
|
|
', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
|
|
archive_file))
|
|
return None
|
|
try:
|
|
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
|
|
except EnvironmentError:
|
|
if pretrained_model_name_or_path in PRETRAINED_CONFIG_ARCHIVE_MAP:
|
|
logger.error(
|
|
"Couldn't reach server at '{}' to download pretrained model configuration file.".format(
|
|
config_file))
|
|
else:
|
|
logger.error(
|
|
"Model name '{}' was not found in model name list ({}). "
|
|
"We assumed '{}' was a path or url but couldn't find any file "
|
|
"associated to this path or url.".format(
|
|
pretrained_model_name_or_path,
|
|
', '.join(PRETRAINED_CONFIG_ARCHIVE_MAP.keys()),
|
|
config_file))
|
|
return None
|
|
if resolved_archive_file == archive_file and resolved_config_file == config_file:
|
|
logger.info("loading weights file {}".format(archive_file))
|
|
logger.info("loading configuration file {}".format(config_file))
|
|
else:
|
|
logger.info("loading weights file {} from cache at {}".format(
|
|
archive_file, resolved_archive_file))
|
|
logger.info("loading configuration file {} from cache at {}".format(
|
|
config_file, resolved_config_file))
|
|
# Load config
|
|
config = XLNetConfig.from_json_file(resolved_config_file)
|
|
logger.info("Model config {}".format(config))
|
|
# Instantiate model.
|
|
model = cls(config, *inputs, **kwargs)
|
|
if state_dict is None and not from_tf:
|
|
state_dict = torch.load(resolved_archive_file, map_location='cpu')
|
|
if from_tf:
|
|
# Directly load from a TensorFlow checkpoint
|
|
return load_tf_weights_in_xlnet(model, resolved_archive_file)
|
|
# Load from a PyTorch state_dict
|
|
missing_keys = []
|
|
unexpected_keys = []
|
|
error_msgs = []
|
|
# copy state_dict so _load_from_state_dict can modify it
|
|
metadata = getattr(state_dict, '_metadata', None)
|
|
state_dict = state_dict.copy()
|
|
if metadata is not None:
|
|
state_dict._metadata = metadata
|
|
|
|
def load(module, prefix=''):
|
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
|
module._load_from_state_dict(
|
|
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
|
|
for name, child in module._modules.items():
|
|
if child is not None:
|
|
load(child, prefix + name + '.')
|
|
start_prefix = ''
|
|
if not hasattr(model, 'xlnet') and any(s.startswith('xlnet.') for s in state_dict.keys()):
|
|
start_prefix = 'xlnet.'
|
|
load(model, prefix=start_prefix)
|
|
if len(missing_keys) > 0:
|
|
logger.info("Weights of {} not initialized from pretrained model: {}".format(
|
|
model.__class__.__name__, missing_keys))
|
|
if len(unexpected_keys) > 0:
|
|
logger.info("Weights from pretrained model not used in {}: {}".format(
|
|
model.__class__.__name__, unexpected_keys))
|
|
if len(error_msgs) > 0:
|
|
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
|
|
model.__class__.__name__, "\n\t".join(error_msgs)))
|
|
return model
|
|
|
|
|
|
class XLNetModel(XLNetPreTrainedModel):
|
|
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
|
super(XLNetModel, self).__init__()
|
|
self.output_attentions = output_attentions
|
|
self.mem_len = config.mem_len
|
|
self.reuse_len = config.reuse_len
|
|
layer = XLNetLayer(config, output_attentions=output_attentions,
|
|
keep_multihead_output=keep_multihead_output)
|
|
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
|
|
|
|
@classmethod
|
|
def _create_mask(qlen, mlen, dtype=torch.float, same_length=False):
|
|
"""create causal attention mask."""
|
|
attn_mask = torch.ones([qlen, qlen], dtype=dtype)
|
|
mask_u = tf.matrix_band_part(attn_mask, 0, -1)
|
|
mask_dia = tf.matrix_band_part(attn_mask, 0, 0)
|
|
attn_mask_pad = tf.zeros([qlen, mlen], dtype=dtype)
|
|
ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
|
|
if same_length:
|
|
mask_l = tf.matrix_band_part(attn_mask, -1, 0)
|
|
ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)
|
|
|
|
return ret
|
|
|
|
def cache_mem(self, curr_out, prev_mem):
|
|
"""cache hidden states into memory."""
|
|
if self.mem_len is None or self.mem_len == 0:
|
|
return None
|
|
else:
|
|
if self.reuse_len is not None and self.reuse_len > 0:
|
|
curr_out = curr_out[:self.reuse_len]
|
|
|
|
if prev_mem is None:
|
|
new_mem = curr_out[-self.mem_len:]
|
|
else:
|
|
new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]
|
|
|
|
return new_mem.detach()
|
|
|
|
def relative_positional_encoding(self, qlen, klen, bsz=None, dtype=torch.float):
|
|
"""create relative positional encoding."""
|
|
freq_seq = torch.zrange(0, d_model, 2.0, dtype=dtype)
|
|
inv_freq = 1 / (10000 ** (freq_seq / self.config.d_model))
|
|
|
|
if self.attn_type == 'bi':
|
|
# beg, end = klen - 1, -qlen
|
|
beg, end = klen, -qlen
|
|
elif self.attn_type == 'uni':
|
|
# beg, end = klen - 1, -1
|
|
beg, end = klen, -1
|
|
else:
|
|
raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))
|
|
|
|
if self.bi_data:
|
|
fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=dtype)
|
|
bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=dtype)
|
|
|
|
if self.clamp_len > 0:
|
|
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
|
bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
|
|
|
if bsz is not None:
|
|
fwd_pos_emb = positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
|
|
bwd_pos_emb = positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
|
|
else:
|
|
fwd_pos_emb = positional_embedding(fwd_pos_seq, inv_freq)
|
|
bwd_pos_emb = positional_embedding(bwd_pos_seq, inv_freq)
|
|
|
|
pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
|
|
else:
|
|
fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=dtype)
|
|
if self.clamp_len > 0:
|
|
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
|
pos_emb = positional_embedding(fwd_pos_seq, inv_freq, bsz)
|
|
|
|
return pos_emb
|
|
|
|
def forward(self, inp_k, seg_id=None, input_mask=None,
|
|
mems=None, perm_mask=None, target_mapping=None, inp_q=None,
|
|
output_all_encoded_layers=True, head_mask=None):
|
|
"""
|
|
Args:
|
|
inp_k: int32 Tensor in shape [len, bsz], the input token IDs.
|
|
seg_id: int32 Tensor in shape [len, bsz], the input segment IDs.
|
|
input_mask: float32 Tensor in shape [len, bsz], the input mask.
|
|
0 for real tokens and 1 for padding.
|
|
mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
|
|
from previous batches. The length of the list equals n_layer.
|
|
If None, no memory is used.
|
|
perm_mask: float32 Tensor in shape [len, len, bsz].
|
|
If perm_mask[i, j, k] = 0, i attend to j in batch k;
|
|
if perm_mask[i, j, k] = 1, i does not attend to j in batch k.
|
|
If None, each position attends to all the others.
|
|
target_mapping: float32 Tensor in shape [num_predict, len, bsz].
|
|
If target_mapping[i, j, k] = 1, the i-th predict in batch k is
|
|
on the j-th token.
|
|
Only used during pretraining for partial prediction.
|
|
Set to None during finetuning.
|
|
inp_q: float32 Tensor in shape [len, bsz].
|
|
1 for tokens with losses and 0 for tokens without losses.
|
|
Only used during pretraining for two-stream attention.
|
|
Set to None during finetuning.
|
|
|
|
mem_len: int, the number of tokens to cache.
|
|
reuse_len: int, the number of tokens in the currect batch to be cached
|
|
and reused in the future.
|
|
bi_data: bool, whether to use bidirectional input pipeline.
|
|
Usually set to True during pretraining and False during finetuning.
|
|
clamp_len: int, clamp all relative distances larger than clamp_len.
|
|
-1 means no clamping.
|
|
same_length: bool, whether to use the same attention length for each token.
|
|
summary_type: str, "last", "first", "mean", or "attn". The method
|
|
to pool the input to get a vector representation.
|
|
"""
|
|
qlen, bsz = inp_k.shape
|
|
mlen = mems[0].shape[0] if mems is not None else 0
|
|
klen = mlen + qlen
|
|
|
|
##### Attention mask
|
|
# causal attention mask
|
|
if self.attn_type == 'uni':
|
|
attn_mask = _create_mask(qlen, mlen, inp_k.dtype, self.same_length)
|
|
attn_mask = attn_mask[:, :, None, None]
|
|
elif self.attn_type == 'bi':
|
|
attn_mask = None
|
|
else:
|
|
raise ValueError('Unsupported attention type: {}'.format(self.attn_type))
|
|
|
|
# data mask: input mask & perm mask
|
|
if input_mask is not None and perm_mask is not None:
|
|
data_mask = input_mask[None] + perm_mask
|
|
elif input_mask is not None and perm_mask is None:
|
|
data_mask = input_mask[None]
|
|
elif input_mask is None and perm_mask is not None:
|
|
data_mask = perm_mask
|
|
else:
|
|
data_mask = None
|
|
|
|
if data_mask is not None:
|
|
# all mems can be attended to
|
|
mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz], dtype=data_mask.dtype, device=data_mask.device)
|
|
data_mask = torch.cat([mems_mask, data_mask], dim=1)
|
|
if attn_mask is None:
|
|
attn_mask = data_mask[:, :, :, None]
|
|
else:
|
|
attn_mask += data_mask[:, :, :, None]
|
|
|
|
if attn_mask is not None:
|
|
attn_mask = (attn_mask > 0).float()
|
|
|
|
if attn_mask is not None:
|
|
non_tgt_mask = -tf.eye(qlen, dtype=tf_float)
|
|
non_tgt_mask = tf.concat([tf.zeros([qlen, mlen], dtype=tf_float),
|
|
non_tgt_mask], axis=-1)
|
|
non_tgt_mask = tf.cast((attn_mask + non_tgt_mask[:, :, None, None]) > 0,
|
|
dtype=tf_float)
|
|
else:
|
|
non_tgt_mask = None
|
|
|
|
##### Word embedding
|
|
word_emb_k = self.word_embedding(inp_k)
|
|
output_h = self.dropout(word_emb_k)
|
|
if inp_q is not None:
|
|
if target_mapping is not None:
|
|
word_emb_q = mask_emb.expand(target_mapping.shape[0], bsz, 1)
|
|
else:
|
|
inp_q_ext = inp_q[:, :, None]
|
|
word_emb_q = inp_q_ext * mask_emb + (1 - inp_q_ext) * word_emb_k
|
|
output_g = self.dropout(word_emb_q)
|
|
else:
|
|
output_g = None
|
|
|
|
##### Segment embedding
|
|
if seg_id is not None:
|
|
# Convert `seg_id` to one-hot `seg_mat`
|
|
mem_pad = torch.zeros([mlen, bsz], dtype=torch.long)
|
|
cat_ids = torch.cat([mem_pad, seg_id], dim=0)
|
|
|
|
# `1` indicates not in the same segment [qlen x klen x bsz]
|
|
seg_mat = (seg_id[:, None] != cat_ids[None, :]).long()
|
|
# seg_mat = tf.one_hot(seg_mat, 2, dtype=tf_float)
|
|
else:
|
|
seg_mat = None
|
|
|
|
##### Positional encoding
|
|
pos_emb = relative_positional_encoding(qlen, klen, bsz=bsz, dtype=inp_k.dtype)
|
|
pos_emb = self.dropout(pos_emb)
|
|
|
|
##### Head mask if needed (for bertology/pruning)
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
|
if head_mask is not None:
|
|
if head_mask.dim() == 1:
|
|
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
|
head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1)
|
|
elif head_mask.dim() == 2:
|
|
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
|
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
|
|
else:
|
|
head_mask = [None] * self.config.num_hidden_layers
|
|
|
|
new_mems = []
|
|
if mems is None:
|
|
mems = [None] * len(self.layer)
|
|
|
|
for i, layer_module in enumerate(self.layer):
|
|
# cache new mems
|
|
new_mems.append(self.cache_mem(output_h, mems[i]))
|
|
|
|
output_h, output_g = layer_module(output_h, output_g,
|
|
attn_mask_h, attn_mask_g,
|
|
r, seg_mat,
|
|
mems=mems[i], target_mapping=target_mapping,
|
|
head_mask=head_mask)
|
|
|
|
output = self.dropout(output_g if output_g is not None else output_h)
|
|
|
|
return output
|
|
|
|
|
|
class XLNetLMHeadModel(XLNetPreTrainedModel):
|
|
"""XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").
|
|
|
|
Params:
|
|
`config`: a XLNetConfig class instance with the configuration to build a new model
|
|
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
|
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
|
This can be used to compute head importance metrics. Default: False
|
|
|
|
Inputs:
|
|
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
|
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
|
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
|
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
|
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
|
a `sentence B` token (see XLNet paper for more details).
|
|
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
|
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
|
input sequence length in the current batch. It's the mask that we typically use for attention when
|
|
a batch has varying length sentences.
|
|
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
|
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
|
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
|
|
|
|
|
Outputs: Tuple of (encoded_layers, pooled_output)
|
|
`encoded_layers`: controled by `output_all_encoded_layers` argument:
|
|
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
|
of each attention block (i.e. 12 full sequences for XLNet-base, 24 for XLNet-large), each
|
|
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, d_model],
|
|
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
|
to the last attention block of shape [batch_size, sequence_length, d_model],
|
|
`pooled_output`: a torch.FloatTensor of size [batch_size, d_model] which is the output of a
|
|
classifier pretrained on top of the hidden state associated to the first character of the
|
|
input (`CLS`) to train on the Next-Sentence task (see XLNet's paper).
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into WordPiece token ids
|
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
|
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
|
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
|
|
|
config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
|
|
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
|
|
|
model = modeling.XLNetModel(config=config)
|
|
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
|
```
|
|
"""
|
|
def __init__(self, config, run_config, output_attentions=False, keep_multihead_output=False):
|
|
super(XLNetLMHeadModel, self).__init__(config)
|
|
self.output_attentions = output_attentions
|
|
self.attn_type = run_config.attn_type
|
|
self.same_length = run_config.same_length
|
|
|
|
self.word_embedding = nn.Embedding(config.vocab_size, config.d_model)
|
|
self.mask_emb = nn.Parameter(torch.Tensor(1, 1, self.d_model))
|
|
self.transformer = XLNetModel(config,
|
|
output_attentions=output_attentions,
|
|
keep_multihead_output=keep_multihead_output)
|
|
self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
# Tie weights
|
|
if config.tie_weight:
|
|
self.lm_loss.weight = self.word_embedding.weight
|
|
|
|
self.apply(self.init_xlnet_weights)
|
|
|
|
def prune_heads(self, heads_to_prune):
|
|
""" Prunes heads of the model.
|
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
|
|
|
def get_multihead_outputs(self):
|
|
""" Gather all multi-head outputs.
|
|
Return: list (layers) of multihead module outputs with gradients
|
|
"""
|
|
return [layer.attention.self.multihead_output for layer in self.encoder.layer]
|
|
|
|
def forward(self, inp_k, seg_id=None, input_mask=None,
|
|
mems=None, perm_mask=None, target_mapping=None, inp_q=None,
|
|
output_all_encoded_layers=True, head_mask=None):
|
|
"""
|
|
Args:
|
|
inp_k: int32 Tensor in shape [len, bsz], the input token IDs.
|
|
seg_id: int32 Tensor in shape [len, bsz], the input segment IDs.
|
|
input_mask: float32 Tensor in shape [len, bsz], the input mask.
|
|
0 for real tokens and 1 for padding.
|
|
mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
|
|
from previous batches. The length of the list equals n_layer.
|
|
If None, no memory is used.
|
|
perm_mask: float32 Tensor in shape [len, len, bsz].
|
|
If perm_mask[i, j, k] = 0, i attend to j in batch k;
|
|
if perm_mask[i, j, k] = 1, i does not attend to j in batch k.
|
|
If None, each position attends to all the others.
|
|
target_mapping: float32 Tensor in shape [num_predict, len, bsz].
|
|
If target_mapping[i, j, k] = 1, the i-th predict in batch k is
|
|
on the j-th token.
|
|
Only used during pretraining for partial prediction.
|
|
Set to None during finetuning.
|
|
inp_q: float32 Tensor in shape [len, bsz].
|
|
1 for tokens with losses and 0 for tokens without losses.
|
|
Only used during pretraining for two-stream attention.
|
|
Set to None during finetuning.
|
|
|
|
mem_len: int, the number of tokens to cache.
|
|
reuse_len: int, the number of tokens in the currect batch to be cached
|
|
and reused in the future.
|
|
bi_data: bool, whether to use bidirectional input pipeline.
|
|
Usually set to True during pretraining and False during finetuning.
|
|
clamp_len: int, clamp all relative distances larger than clamp_len.
|
|
-1 means no clamping.
|
|
same_length: bool, whether to use the same attention length for each token.
|
|
summary_type: str, "last", "first", "mean", or "attn". The method
|
|
to pool the input to get a vector representation.
|
|
"""
|
|
output, new_mems = self.transformer(output_h, non_tgt_mask, r, seg_mat,
|
|
output_g=output_g, attn_mask_g=attn_mask,
|
|
mems=mems, target_mapping=target_mapping,
|
|
head_mask=head_mask)
|
|
|
|
logits = self.lm_loss(output)
|
|
|
|
# if self.output_attentions:
|
|
# all_attentions, encoded_layers = encoded_layers
|
|
# sequence_output = encoded_layers[-1]
|
|
# pooled_output = self.pooler(sequence_output)
|
|
# if not output_all_encoded_layers:
|
|
# encoded_layers = encoded_layers[-1]
|
|
# if self.output_attentions:
|
|
# return all_attentions, encoded_layers, pooled_output
|
|
return output, new_mems
|