mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
work in progress on xlnet
This commit is contained in:
parent
de713fa9b4
commit
c2ea5aef77
@ -126,6 +126,16 @@ def swish(x):
|
||||
|
||||
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
|
||||
|
||||
def positional_embedding(pos_seq, inv_freq, bsz=None):
|
||||
sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
|
||||
pos_emb = torch.cat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
|
||||
pos_emb = pos_emb[:, None, :]
|
||||
|
||||
if bsz is not None:
|
||||
pos_emb = pos_emb.expand(1, bsz, 1)
|
||||
|
||||
return pos_emb
|
||||
|
||||
class XLNetBaseConfig(object):
|
||||
@classmethod
|
||||
def from_dict(cls, json_object):
|
||||
@ -165,15 +175,14 @@ class XLNetConfig(XLNetBaseConfig):
|
||||
"""
|
||||
def __init__(self,
|
||||
vocab_size_or_config_json_file,
|
||||
d_model=768,
|
||||
n_layer=12,
|
||||
n_head=12,
|
||||
d_inner=3072,
|
||||
d_model=1024,
|
||||
n_layer=24,
|
||||
n_head=16,
|
||||
d_inner=4096,
|
||||
ff_activation="gelu",
|
||||
untie_r=True,
|
||||
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
layer_norm_eps=1e-12):
|
||||
"""Constructs XLNetConfig.
|
||||
@ -197,8 +206,6 @@ class XLNetConfig(XLNetBaseConfig):
|
||||
max_position_embeddings: The maximum sequence length that this model might
|
||||
ever be used with. Typically set this to something large just in case
|
||||
(e.g., 512 or 1024 or 2048).
|
||||
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
|
||||
`XLNetModel`.
|
||||
initializer_range: The sttdev of the truncated_normal_initializer for
|
||||
initializing all weight matrices.
|
||||
layer_norm_eps: The epsilon used by LayerNorm.
|
||||
@ -214,11 +221,12 @@ class XLNetConfig(XLNetBaseConfig):
|
||||
self.d_model = d_model
|
||||
self.n_layer = n_layer
|
||||
self.n_head = n_head
|
||||
assert d_model % n_head == 0
|
||||
self.d_head = d_model // n_head
|
||||
self.ff_activation = ff_activation
|
||||
self.d_inner = d_inner
|
||||
self.untie_r = untie_r
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.initializer_range = initializer_range
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
else:
|
||||
@ -233,8 +241,8 @@ class XLNetRunConfig(XLNetBaseConfig):
|
||||
We store them separately from XLNetConfig for flexibility.
|
||||
"""
|
||||
def __init__(self,
|
||||
dropout,
|
||||
dropatt,
|
||||
dropout=0.1,
|
||||
dropatt=0.1,
|
||||
init="normal",
|
||||
init_range=0.1,
|
||||
init_std=0.02,
|
||||
@ -278,12 +286,12 @@ try:
|
||||
except ImportError:
|
||||
logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
|
||||
class XLNetLayerNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-12):
|
||||
def __init__(self, d_model, eps=1e-12):
|
||||
"""Construct a layernorm module in the TF style (epsilon inside the square root).
|
||||
"""
|
||||
super(XLNetLayerNorm, self).__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.bias = nn.Parameter(torch.zeros(hidden_size))
|
||||
self.weight = nn.Parameter(torch.ones(d_model))
|
||||
self.bias = nn.Parameter(torch.zeros(d_model))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, x):
|
||||
@ -292,6 +300,220 @@ except ImportError:
|
||||
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
||||
return self.weight * x + self.bias
|
||||
|
||||
class XLNetRelativeAttention(nn.Module):
|
||||
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
||||
super(XLNetRelativeAttention, self).__init__()
|
||||
self.output_attentions = output_attentions
|
||||
if config.d_model % config.num_attention_heads != 0:
|
||||
raise ValueError(
|
||||
"The hidden size (%d) is not a multiple of the number of attention "
|
||||
"heads (%d)" % (config.d_model, config.num_attention_heads))
|
||||
self.output_attentions = output_attentions
|
||||
self.keep_multihead_output = keep_multihead_output
|
||||
self.multihead_output = None
|
||||
|
||||
self.n_head = config.num_attention_heads
|
||||
self.d_head = config.d_head
|
||||
self.d_model = config.d_model
|
||||
self.scale = 1 / (config.d_head ** 0.5)
|
||||
|
||||
self.q = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
|
||||
self.k = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
|
||||
self.v = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
|
||||
self.o = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
|
||||
self.r = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
|
||||
|
||||
self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
|
||||
self.r_s_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
|
||||
self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
|
||||
self.seg_embed = nn.Parameter(torch.Tensor(self.n_head, 2, self.d_head))
|
||||
|
||||
self.LayerNorm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.dropout)
|
||||
|
||||
def prune_heads(self, heads):
|
||||
raise NotImplementedError
|
||||
|
||||
def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None):
|
||||
"""Core relative positional attention operations."""
|
||||
|
||||
# content based attention score
|
||||
ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)
|
||||
|
||||
# position based attention score
|
||||
bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
|
||||
bd = rel_shift(bd, klen=torch.shape(ac)[1])
|
||||
|
||||
# segment based attention score
|
||||
if seg_mat is None:
|
||||
ef = 0
|
||||
else:
|
||||
ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
|
||||
ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)
|
||||
|
||||
# merge attention scores and perform masking
|
||||
attn_score = (ac + bd + ef) * self.scale
|
||||
if attn_mask is not None:
|
||||
# attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
|
||||
attn_score = attn_score - 1e30 * attn_mask
|
||||
|
||||
# attention probability
|
||||
attn_prob = F.softmax(attn_score, dim=1)
|
||||
attn_prob = self.dropout(attn_prob)
|
||||
|
||||
# attention output
|
||||
attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)
|
||||
|
||||
return attn_vec
|
||||
|
||||
def post_attention(self, h, attn_vec, residual=True):
|
||||
"""Post-attention processing."""
|
||||
# post-attention projection (back to `d_model`)
|
||||
attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)
|
||||
|
||||
attn_out = self.dropout(attn_out)
|
||||
if residual:
|
||||
attn_out = attn_out + h
|
||||
output = self.LayerNorm(attn_out)
|
||||
|
||||
return output
|
||||
|
||||
def forward(self, h, g,
|
||||
attn_mask_h, attn_mask_g,
|
||||
r, seg_mat,
|
||||
mems=None, target_mapping=None, head_mask=None):
|
||||
if g is not None:
|
||||
###### Two-stream attention with relative positional encoding.
|
||||
# content based attention score
|
||||
if mems is not None and mems.dim() > 1:
|
||||
cat = torch.cat([mems, h], dim=0)
|
||||
else:
|
||||
cat = h
|
||||
|
||||
# content-based key head
|
||||
k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
|
||||
|
||||
# content-based value head
|
||||
v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)
|
||||
|
||||
# position-based key head
|
||||
k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)
|
||||
|
||||
##### h-stream
|
||||
# content-stream query head
|
||||
q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
|
||||
|
||||
# core attention ops
|
||||
attn_vec_h = self.rel_attn_core(
|
||||
q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)
|
||||
|
||||
# post processing
|
||||
output_h = self.post_attention(h, attn_vec_h)
|
||||
|
||||
##### g-stream
|
||||
# query-stream query head
|
||||
q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)
|
||||
|
||||
# core attention ops
|
||||
if target_mapping is not None:
|
||||
q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
|
||||
attn_vec_g = self.rel_attn_core(
|
||||
q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)
|
||||
attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
|
||||
else:
|
||||
attn_vec_g = self.rel_attn_core(
|
||||
q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)
|
||||
|
||||
# post processing
|
||||
output_g = self.post_attention(g, attn_vec_g)
|
||||
attention_output = output_h, output_g
|
||||
else:
|
||||
###### Multi-head attention with relative positional encoding
|
||||
if mems is not None and mems.dim() > 1:
|
||||
cat = torch.cat([mems, h], dim=0)
|
||||
else:
|
||||
cat = h
|
||||
|
||||
# content heads
|
||||
q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
|
||||
k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
|
||||
v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)
|
||||
|
||||
# positional heads
|
||||
k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)
|
||||
|
||||
# core attention ops
|
||||
attn_vec = self.rel_attn_core(
|
||||
q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)
|
||||
|
||||
# post processing
|
||||
attention_output = self.post_attention(h, attn_vec)
|
||||
|
||||
|
||||
# Mask heads if we want to
|
||||
# if head_mask is not None:
|
||||
# attention_probs = attention_probs * head_mask
|
||||
|
||||
# context_layer = torch.matmul(attention_probs, value_layer)
|
||||
# if self.keep_multihead_output:
|
||||
# self.multihead_output = context_layer
|
||||
# self.multihead_output.retain_grad()
|
||||
|
||||
# context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||||
# new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||||
# context_layer = context_layer.view(*new_context_layer_shape)
|
||||
|
||||
# if self.output_attentions:
|
||||
# attentions, self_output = self_output
|
||||
# if self.output_attentions:
|
||||
# return attentions, attention_output
|
||||
return attention_output
|
||||
|
||||
class XLNetFeedForward(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(XLNetFeedForward, self).__init__()
|
||||
self.LayerNorm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
|
||||
self.layer_1 = nn.Linear(config.d_model, config.d_inner)
|
||||
self.layer_2 = nn.Linear(config.d_inner, config.d_model)
|
||||
self.dropout = nn.Dropout(config.dropout)
|
||||
if isinstance(config.ff_activation, str) or (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
|
||||
self.activation_function = ACT2FN[config.ff_activation]
|
||||
else:
|
||||
self.activation_function = config.ff_activation
|
||||
|
||||
def forward(self, hidden_states, input_tensor):
|
||||
hidden_states = self.layer_1(hidden_states)
|
||||
hidden_states = self.activation_function(hidden_states)
|
||||
hidden_states = self.layer_2(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
class XLNetLayer(nn.Module):
|
||||
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
||||
super(XLNetLayer, self).__init__()
|
||||
self.output_attentions = output_attentions
|
||||
self.rel_attn = XLNetRelativeAttention(config, output_attentions=output_attentions,
|
||||
keep_multihead_output=keep_multihead_output)
|
||||
self.ff = XLNetFeedForward(config)
|
||||
self.dropout = nn.Dropout(config.dropout)
|
||||
|
||||
def forward(self, output_h, output_g,
|
||||
attn_mask_h, attn_mask_g,
|
||||
r, seg_mat, r, seg_mat,
|
||||
two_streams=False, mems=None, target_mapping=None, head_mask=None):
|
||||
output_h, output_g = self.rel_attn(output_h, output_g,
|
||||
attn_mask_h, attn_mask_g,
|
||||
r, seg_mat,
|
||||
mems=mems, target_mapping=target_mapping, head_mask=head_mask)
|
||||
if two_streams:
|
||||
output_g = self.ff(output_g)
|
||||
output_h = self.ff(output_h)
|
||||
|
||||
# if self.output_attentions:
|
||||
# return attentions, layer_output
|
||||
return output_h, output_g
|
||||
|
||||
class XLNetPreTrainedModel(nn.Module):
|
||||
""" An abstract class to handle weights initialization and
|
||||
a simple interface for dowloading and loading pretrained models.
|
||||
@ -445,6 +667,228 @@ class XLNetPreTrainedModel(nn.Module):
|
||||
|
||||
|
||||
class XLNetModel(XLNetPreTrainedModel):
|
||||
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
||||
super(XLNetModel, self).__init__()
|
||||
self.output_attentions = output_attentions
|
||||
self.mem_len = config.mem_len
|
||||
self.reuse_len = config.reuse_len
|
||||
layer = XLNetLayer(config, output_attentions=output_attentions,
|
||||
keep_multihead_output=keep_multihead_output)
|
||||
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
|
||||
|
||||
@classmethod
|
||||
def _create_mask(qlen, mlen, dtype=torch.float, same_length=False):
|
||||
"""create causal attention mask."""
|
||||
attn_mask = torch.ones([qlen, qlen], dtype=dtype)
|
||||
mask_u = tf.matrix_band_part(attn_mask, 0, -1)
|
||||
mask_dia = tf.matrix_band_part(attn_mask, 0, 0)
|
||||
attn_mask_pad = tf.zeros([qlen, mlen], dtype=dtype)
|
||||
ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
|
||||
if same_length:
|
||||
mask_l = tf.matrix_band_part(attn_mask, -1, 0)
|
||||
ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)
|
||||
|
||||
return ret
|
||||
|
||||
def cache_mem(self, curr_out, prev_mem):
|
||||
"""cache hidden states into memory."""
|
||||
if self.mem_len is None or self.mem_len == 0:
|
||||
return None
|
||||
else:
|
||||
if self.reuse_len is not None and self.reuse_len > 0:
|
||||
curr_out = curr_out[:self.reuse_len]
|
||||
|
||||
if prev_mem is None:
|
||||
new_mem = curr_out[-self.mem_len:]
|
||||
else:
|
||||
new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]
|
||||
|
||||
return new_mem.detach()
|
||||
|
||||
def relative_positional_encoding(self, qlen, klen, bsz=None, dtype=torch.float):
|
||||
"""create relative positional encoding."""
|
||||
freq_seq = torch.zrange(0, d_model, 2.0, dtype=dtype)
|
||||
inv_freq = 1 / (10000 ** (freq_seq / self.config.d_model))
|
||||
|
||||
if self.attn_type == 'bi':
|
||||
# beg, end = klen - 1, -qlen
|
||||
beg, end = klen, -qlen
|
||||
elif self.attn_type == 'uni':
|
||||
# beg, end = klen - 1, -1
|
||||
beg, end = klen, -1
|
||||
else:
|
||||
raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))
|
||||
|
||||
if self.bi_data:
|
||||
fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=dtype)
|
||||
bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=dtype)
|
||||
|
||||
if self.clamp_len > 0:
|
||||
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
||||
bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
||||
|
||||
if bsz is not None:
|
||||
fwd_pos_emb = positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
|
||||
bwd_pos_emb = positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
|
||||
else:
|
||||
fwd_pos_emb = positional_embedding(fwd_pos_seq, inv_freq)
|
||||
bwd_pos_emb = positional_embedding(bwd_pos_seq, inv_freq)
|
||||
|
||||
pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
|
||||
else:
|
||||
fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=dtype)
|
||||
if self.clamp_len > 0:
|
||||
fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
|
||||
pos_emb = positional_embedding(fwd_pos_seq, inv_freq, bsz)
|
||||
|
||||
return pos_emb
|
||||
|
||||
def forward(self, inp_k, seg_id=None, input_mask=None,
|
||||
mems=None, perm_mask=None, target_mapping=None, inp_q=None,
|
||||
output_all_encoded_layers=True, head_mask=None):
|
||||
"""
|
||||
Args:
|
||||
inp_k: int32 Tensor in shape [len, bsz], the input token IDs.
|
||||
seg_id: int32 Tensor in shape [len, bsz], the input segment IDs.
|
||||
input_mask: float32 Tensor in shape [len, bsz], the input mask.
|
||||
0 for real tokens and 1 for padding.
|
||||
mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
|
||||
from previous batches. The length of the list equals n_layer.
|
||||
If None, no memory is used.
|
||||
perm_mask: float32 Tensor in shape [len, len, bsz].
|
||||
If perm_mask[i, j, k] = 0, i attend to j in batch k;
|
||||
if perm_mask[i, j, k] = 1, i does not attend to j in batch k.
|
||||
If None, each position attends to all the others.
|
||||
target_mapping: float32 Tensor in shape [num_predict, len, bsz].
|
||||
If target_mapping[i, j, k] = 1, the i-th predict in batch k is
|
||||
on the j-th token.
|
||||
Only used during pretraining for partial prediction.
|
||||
Set to None during finetuning.
|
||||
inp_q: float32 Tensor in shape [len, bsz].
|
||||
1 for tokens with losses and 0 for tokens without losses.
|
||||
Only used during pretraining for two-stream attention.
|
||||
Set to None during finetuning.
|
||||
|
||||
mem_len: int, the number of tokens to cache.
|
||||
reuse_len: int, the number of tokens in the currect batch to be cached
|
||||
and reused in the future.
|
||||
bi_data: bool, whether to use bidirectional input pipeline.
|
||||
Usually set to True during pretraining and False during finetuning.
|
||||
clamp_len: int, clamp all relative distances larger than clamp_len.
|
||||
-1 means no clamping.
|
||||
same_length: bool, whether to use the same attention length for each token.
|
||||
summary_type: str, "last", "first", "mean", or "attn". The method
|
||||
to pool the input to get a vector representation.
|
||||
"""
|
||||
qlen, bsz = inp_k.shape
|
||||
mlen = mems[0].shape[0] if mems is not None else 0
|
||||
klen = mlen + qlen
|
||||
|
||||
##### Attention mask
|
||||
# causal attention mask
|
||||
if self.attn_type == 'uni':
|
||||
attn_mask = _create_mask(qlen, mlen, inp_k.dtype, self.same_length)
|
||||
attn_mask = attn_mask[:, :, None, None]
|
||||
elif self.attn_type == 'bi':
|
||||
attn_mask = None
|
||||
else:
|
||||
raise ValueError('Unsupported attention type: {}'.format(self.attn_type))
|
||||
|
||||
# data mask: input mask & perm mask
|
||||
if input_mask is not None and perm_mask is not None:
|
||||
data_mask = input_mask[None] + perm_mask
|
||||
elif input_mask is not None and perm_mask is None:
|
||||
data_mask = input_mask[None]
|
||||
elif input_mask is None and perm_mask is not None:
|
||||
data_mask = perm_mask
|
||||
else:
|
||||
data_mask = None
|
||||
|
||||
if data_mask is not None:
|
||||
# all mems can be attended to
|
||||
mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz], dtype=data_mask.dtype, device=data_mask.device)
|
||||
data_mask = torch.cat([mems_mask, data_mask], dim=1)
|
||||
if attn_mask is None:
|
||||
attn_mask = data_mask[:, :, :, None]
|
||||
else:
|
||||
attn_mask += data_mask[:, :, :, None]
|
||||
|
||||
if attn_mask is not None:
|
||||
attn_mask = (attn_mask > 0).float()
|
||||
|
||||
if attn_mask is not None:
|
||||
non_tgt_mask = -tf.eye(qlen, dtype=tf_float)
|
||||
non_tgt_mask = tf.concat([tf.zeros([qlen, mlen], dtype=tf_float),
|
||||
non_tgt_mask], axis=-1)
|
||||
non_tgt_mask = tf.cast((attn_mask + non_tgt_mask[:, :, None, None]) > 0,
|
||||
dtype=tf_float)
|
||||
else:
|
||||
non_tgt_mask = None
|
||||
|
||||
##### Word embedding
|
||||
word_emb_k = self.word_embedding(inp_k)
|
||||
output_h = self.dropout(word_emb_k)
|
||||
if inp_q is not None:
|
||||
if target_mapping is not None:
|
||||
word_emb_q = mask_emb.expand(target_mapping.shape[0], bsz, 1)
|
||||
else:
|
||||
inp_q_ext = inp_q[:, :, None]
|
||||
word_emb_q = inp_q_ext * mask_emb + (1 - inp_q_ext) * word_emb_k
|
||||
output_g = self.dropout(word_emb_q)
|
||||
else:
|
||||
output_g = None
|
||||
|
||||
##### Segment embedding
|
||||
if seg_id is not None:
|
||||
# Convert `seg_id` to one-hot `seg_mat`
|
||||
mem_pad = torch.zeros([mlen, bsz], dtype=torch.long)
|
||||
cat_ids = torch.cat([mem_pad, seg_id], dim=0)
|
||||
|
||||
# `1` indicates not in the same segment [qlen x klen x bsz]
|
||||
seg_mat = (seg_id[:, None] != cat_ids[None, :]).long()
|
||||
# seg_mat = tf.one_hot(seg_mat, 2, dtype=tf_float)
|
||||
else:
|
||||
seg_mat = None
|
||||
|
||||
##### Positional encoding
|
||||
pos_emb = relative_positional_encoding(qlen, klen, bsz=bsz, dtype=inp_k.dtype)
|
||||
pos_emb = self.dropout(pos_emb)
|
||||
|
||||
##### Head mask if needed (for bertology/pruning)
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
if head_mask is not None:
|
||||
if head_mask.dim() == 1:
|
||||
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
||||
head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1)
|
||||
elif head_mask.dim() == 2:
|
||||
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
||||
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
|
||||
else:
|
||||
head_mask = [None] * self.config.num_hidden_layers
|
||||
|
||||
new_mems = []
|
||||
if mems is None:
|
||||
mems = [None] * len(self.layer)
|
||||
|
||||
for i, layer_module in enumerate(self.layer):
|
||||
# cache new mems
|
||||
new_mems.append(self.cache_mem(output_h, mems[i]))
|
||||
|
||||
output_h, output_g = layer_module(output_h, output_g,
|
||||
attn_mask_h, attn_mask_g,
|
||||
r, seg_mat,
|
||||
mems=mems[i], target_mapping=target_mapping,
|
||||
head_mask=head_mask)
|
||||
|
||||
output = self.dropout(output_g if output_g is not None else output_h)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class XLNetLMHeadModel(XLNetPreTrainedModel):
|
||||
"""XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").
|
||||
|
||||
Params:
|
||||
@ -473,10 +917,10 @@ class XLNetModel(XLNetPreTrainedModel):
|
||||
`encoded_layers`: controled by `output_all_encoded_layers` argument:
|
||||
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
||||
of each attention block (i.e. 12 full sequences for XLNet-base, 24 for XLNet-large), each
|
||||
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
||||
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, d_model],
|
||||
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
||||
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
||||
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
||||
to the last attention block of shape [batch_size, sequence_length, d_model],
|
||||
`pooled_output`: a torch.FloatTensor of size [batch_size, d_model] which is the output of a
|
||||
classifier pretrained on top of the hidden state associated to the first character of the
|
||||
input (`CLS`) to train on the Next-Sentence task (see XLNet's paper).
|
||||
|
||||
@ -487,16 +931,30 @@ class XLNetModel(XLNetPreTrainedModel):
|
||||
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
||||
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
||||
|
||||
config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
||||
config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
|
||||
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
||||
|
||||
model = modeling.XLNetModel(config=config)
|
||||
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
||||
```
|
||||
"""
|
||||
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
||||
super(XLNetModel, self).__init__(config)
|
||||
def __init__(self, config, run_config, output_attentions=False, keep_multihead_output=False):
|
||||
super(XLNetLMHeadModel, self).__init__(config)
|
||||
self.output_attentions = output_attentions
|
||||
self.attn_type = run_config.attn_type
|
||||
self.same_length = run_config.same_length
|
||||
|
||||
self.word_embedding = nn.Embedding(config.vocab_size, config.d_model)
|
||||
self.mask_emb = nn.Parameter(torch.Tensor(1, 1, self.d_model))
|
||||
self.transformer = XLNetModel(config,
|
||||
output_attentions=output_attentions,
|
||||
keep_multihead_output=keep_multihead_output)
|
||||
self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True)
|
||||
self.dropout = nn.Dropout(config.dropout)
|
||||
# Tie weights
|
||||
if config.tie_weight:
|
||||
self.lm_loss.weight = self.word_embedding.weight
|
||||
|
||||
self.apply(self.init_xlnet_weights)
|
||||
|
||||
def prune_heads(self, heads_to_prune):
|
||||
@ -512,54 +970,56 @@ class XLNetModel(XLNetPreTrainedModel):
|
||||
"""
|
||||
return [layer.attention.self.multihead_output for layer in self.encoder.layer]
|
||||
|
||||
def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, head_mask=None):
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
if token_type_ids is None:
|
||||
token_type_ids = torch.zeros_like(input_ids)
|
||||
def forward(self, inp_k, seg_id=None, input_mask=None,
|
||||
mems=None, perm_mask=None, target_mapping=None, inp_q=None,
|
||||
output_all_encoded_layers=True, head_mask=None):
|
||||
"""
|
||||
Args:
|
||||
inp_k: int32 Tensor in shape [len, bsz], the input token IDs.
|
||||
seg_id: int32 Tensor in shape [len, bsz], the input segment IDs.
|
||||
input_mask: float32 Tensor in shape [len, bsz], the input mask.
|
||||
0 for real tokens and 1 for padding.
|
||||
mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
|
||||
from previous batches. The length of the list equals n_layer.
|
||||
If None, no memory is used.
|
||||
perm_mask: float32 Tensor in shape [len, len, bsz].
|
||||
If perm_mask[i, j, k] = 0, i attend to j in batch k;
|
||||
if perm_mask[i, j, k] = 1, i does not attend to j in batch k.
|
||||
If None, each position attends to all the others.
|
||||
target_mapping: float32 Tensor in shape [num_predict, len, bsz].
|
||||
If target_mapping[i, j, k] = 1, the i-th predict in batch k is
|
||||
on the j-th token.
|
||||
Only used during pretraining for partial prediction.
|
||||
Set to None during finetuning.
|
||||
inp_q: float32 Tensor in shape [len, bsz].
|
||||
1 for tokens with losses and 0 for tokens without losses.
|
||||
Only used during pretraining for two-stream attention.
|
||||
Set to None during finetuning.
|
||||
|
||||
# We create a 3D attention mask from a 2D tensor mask.
|
||||
# Sizes are [batch_size, 1, 1, to_seq_length]
|
||||
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
||||
# this attention mask is more simple than the triangular masking of causal attention
|
||||
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
||||
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
||||
mem_len: int, the number of tokens to cache.
|
||||
reuse_len: int, the number of tokens in the currect batch to be cached
|
||||
and reused in the future.
|
||||
bi_data: bool, whether to use bidirectional input pipeline.
|
||||
Usually set to True during pretraining and False during finetuning.
|
||||
clamp_len: int, clamp all relative distances larger than clamp_len.
|
||||
-1 means no clamping.
|
||||
same_length: bool, whether to use the same attention length for each token.
|
||||
summary_type: str, "last", "first", "mean", or "attn". The method
|
||||
to pool the input to get a vector representation.
|
||||
"""
|
||||
output, new_mems = self.transformer(output_h, non_tgt_mask, r, seg_mat,
|
||||
output_g=output_g, attn_mask_g=attn_mask,
|
||||
mems=mems, target_mapping=target_mapping,
|
||||
head_mask=head_mask)
|
||||
|
||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and -10000.0 for masked positions.
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
|
||||
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
||||
logits = self.lm_loss(output)
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
if head_mask is not None:
|
||||
if head_mask.dim() == 1:
|
||||
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
||||
head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1)
|
||||
elif head_mask.dim() == 2:
|
||||
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
||||
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
|
||||
else:
|
||||
head_mask = [None] * self.config.num_hidden_layers
|
||||
|
||||
embedding_output = self.embeddings(input_ids, token_type_ids)
|
||||
encoded_layers = self.encoder(embedding_output,
|
||||
extended_attention_mask,
|
||||
output_all_encoded_layers=output_all_encoded_layers,
|
||||
head_mask=head_mask)
|
||||
if self.output_attentions:
|
||||
all_attentions, encoded_layers = encoded_layers
|
||||
sequence_output = encoded_layers[-1]
|
||||
pooled_output = self.pooler(sequence_output)
|
||||
if not output_all_encoded_layers:
|
||||
encoded_layers = encoded_layers[-1]
|
||||
if self.output_attentions:
|
||||
return all_attentions, encoded_layers, pooled_output
|
||||
return encoded_layers, pooled_output
|
||||
|
||||
# if self.output_attentions:
|
||||
# all_attentions, encoded_layers = encoded_layers
|
||||
# sequence_output = encoded_layers[-1]
|
||||
# pooled_output = self.pooler(sequence_output)
|
||||
# if not output_all_encoded_layers:
|
||||
# encoded_layers = encoded_layers[-1]
|
||||
# if self.output_attentions:
|
||||
# return all_attentions, encoded_layers, pooled_output
|
||||
return output, new_mems
|
||||
|
Loading…
Reference in New Issue
Block a user