
* toctree * not-doctested.txt * collapse sections * feedback * update * rewrite get started sections * fixes * fix * loading models * fix * customize models * share * fix link * contribute part 1 * contribute pt 2 * fix toctree * tokenization pt 1 * Add new model (#32615) * v1 - working version * fix * fix * fix * fix * rename to correct name * fix title * fixup * rename files * fix * add copied from on tests * rename to `FalconMamba` everywhere and fix bugs * fix quantization + accelerate * fix copies * add `torch.compile` support * fix tests * fix tests and add slow tests * copies on config * merge the latest changes * fix tests * add few lines about instruct * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * fix tests --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * "to be not" -> "not to be" (#32636) * "to be not" -> "not to be" * Update sam.md * Update trainer.py * Update modeling_utils.py * Update test_modeling_utils.py * Update test_modeling_utils.py * fix hfoption tag * tokenization pt. 2 * image processor * fix toctree * backbones * feature extractor * fix file name * processor * update not-doctested * update * make style * fix toctree * revision * make fixup * fix toctree * fix * make style * fix hfoption tag * pipeline * pipeline gradio * pipeline web server * add pipeline * fix toctree * not-doctested * prompting * llm optims * fix toctree * fixes * cache * text generation * fix * chat pipeline * chat stuff * xla * torch.compile * cpu inference * toctree * gpu inference * agents and tools * gguf/tiktoken * finetune * toctree * trainer * trainer pt 2 * optims * optimizers * accelerate * parallelism * fsdp * update * distributed cpu * hardware training * gpu training * gpu training 2 * peft * distrib debug * deepspeed 1 * deepspeed 2 * chat toctree * quant pt 1 * quant pt 2 * fix toctree * fix * fix * quant pt 3 * quant pt 4 * serialization * torchscript * scripts * tpu * review * model addition timeline * modular * more reviews * reviews * fix toctree * reviews reviews * continue reviews * more reviews * modular transformers * more review * zamba2 * fix * all frameworks * pytorch * supported model frameworks * flashattention * rm check_table * not-doctested.txt * rm check_support_list.py * feedback * updates/feedback * review * feedback * fix * update * feedback * updates * update --------- Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
4.5 KiB
BLIP
Overview
The BLIP model was proposed in BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
BLIP is a model that is able to perform various multi-modal tasks including:
- Visual Question Answering
- Image-Text retrieval (Image-text matching)
- Image Captioning
The abstract from the paper is the following:
Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.
This model was contributed by ybelkada. The original code can be found here.
Resources
- Jupyter notebook on how to fine-tune BLIP for image captioning on a custom dataset
BlipConfig
autodoc BlipConfig - from_text_vision_configs
BlipTextConfig
autodoc BlipTextConfig
BlipVisionConfig
autodoc BlipVisionConfig
BlipProcessor
autodoc BlipProcessor
BlipImageProcessor
autodoc BlipImageProcessor - preprocess
BlipImageProcessorFast
autodoc BlipImageProcessorFast - preprocess
BlipModel
BlipModel
is going to be deprecated in future versions, please use BlipForConditionalGeneration
, BlipForImageTextRetrieval
or BlipForQuestionAnswering
depending on your usecase.
autodoc BlipModel - forward - get_text_features - get_image_features
BlipTextModel
autodoc BlipTextModel - forward
BlipVisionModel
autodoc BlipVisionModel - forward
BlipForConditionalGeneration
autodoc BlipForConditionalGeneration - forward
BlipForImageTextRetrieval
autodoc BlipForImageTextRetrieval - forward
BlipForQuestionAnswering
autodoc BlipForQuestionAnswering - forward
TFBlipModel
autodoc TFBlipModel - call - get_text_features - get_image_features
TFBlipTextModel
autodoc TFBlipTextModel - call
TFBlipVisionModel
autodoc TFBlipVisionModel - call
TFBlipForConditionalGeneration
autodoc TFBlipForConditionalGeneration - call
TFBlipForImageTextRetrieval
autodoc TFBlipForImageTextRetrieval - call
TFBlipForQuestionAnswering
autodoc TFBlipForQuestionAnswering - call