mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* transformers-cli -> transformers * Chat command works with positional argument * update doc references to transformers-cli * doc headers * deepspeed --------- Co-authored-by: Joao Gante <joao@huggingface.co>
201 lines
9.7 KiB
Markdown
201 lines
9.7 KiB
Markdown
|
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
|
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
|
">
|
|
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
|
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
</div>
|
|
</div>
|
|
|
|
# Gemma
|
|
|
|
[Gemma](https://huggingface.co/papers/2403.08295) is a family of lightweight language models with pretrained and instruction-tuned variants, available in 2B and 7B parameters. The architecture is based on a transformer decoder-only design. It features Multi-Query Attention, rotary positional embeddings (RoPE), GeGLU activation functions, and RMSNorm layer normalization.
|
|
|
|
The instruction-tuned variant was fine-tuned with supervised learning on instruction-following data, followed by reinforcement learning from human feedback (RLHF) to align the model outputs with human preferences.
|
|
|
|
You can find all the original Gemma checkpoints under the [Gemma](https://huggingface.co/collections/google/gemma-release-65d5efbccdbb8c4202ec078b) release.
|
|
|
|
|
|
> [!TIP]
|
|
> Click on the Gemma models in the right sidebar for more examples of how to apply Gemma to different language tasks.
|
|
|
|
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
pipeline = pipeline(
|
|
task="text-generation",
|
|
model="google/gemma-2b",
|
|
torch_dtype=torch.bfloat16,
|
|
device="cuda",
|
|
)
|
|
|
|
pipeline("LLMs generate text through a process known as", max_new_tokens=50)
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"google/gemma-2b",
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
attn_implementation="sdpa"
|
|
)
|
|
|
|
input_text = "LLMs generate text through a process known as"
|
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
|
outputs = model.generate(**input_ids, max_new_tokens=50, cache_implementation="static")
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="transformers CLI">
|
|
|
|
```bash
|
|
echo -e "LLMs generate text through a process known as" | transformers run --task text-generation --model google/gemma-2b --device 0
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
|
|
|
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
|
|
|
|
```py
|
|
#!pip install bitsandbytes
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
|
|
quantization_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_compute_dtype=torch.bfloat16,
|
|
bnb_4bit_quant_type="nf4"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"google/gemma-7b",
|
|
quantization_config=quantization_config,
|
|
device_map="auto",
|
|
attn_implementation="sdpa"
|
|
)
|
|
|
|
input_text = "LLMs generate text through a process known as."
|
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
outputs = model.generate(
|
|
**input_ids,
|
|
max_new_tokens=50,
|
|
cache_implementation="static"
|
|
)
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
```
|
|
|
|
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
|
|
|
```py
|
|
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
|
|
|
visualizer = AttentionMaskVisualizer("google/gemma-2b")
|
|
visualizer("LLMs generate text through a process known as")
|
|
```
|
|
|
|
<div class="flex justify-center">
|
|
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/gemma-attn-mask.png"/>
|
|
</div>
|
|
|
|
## Notes
|
|
|
|
- The original Gemma models support standard kv-caching used in many transformer-based language models. You can use use the default [`DynamicCache`] instance or a tuple of tensors for past key values during generation. This makes it compatible with typical autoregressive generation workflows.
|
|
|
|
```py
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"google/gemma-2b",
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
attn_implementation="sdpa"
|
|
)
|
|
input_text = "LLMs generate text through a process known as"
|
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
past_key_values = DynamicCache()
|
|
outputs = model.generate(**input_ids, max_new_tokens=50, past_key_values=past_key_values)
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
```
|
|
|
|
## GemmaConfig
|
|
|
|
[[autodoc]] GemmaConfig
|
|
|
|
## GemmaTokenizer
|
|
|
|
[[autodoc]] GemmaTokenizer
|
|
|
|
|
|
## GemmaTokenizerFast
|
|
|
|
[[autodoc]] GemmaTokenizerFast
|
|
|
|
## GemmaModel
|
|
|
|
[[autodoc]] GemmaModel
|
|
- forward
|
|
|
|
## GemmaForCausalLM
|
|
|
|
[[autodoc]] GemmaForCausalLM
|
|
- forward
|
|
|
|
## GemmaForSequenceClassification
|
|
|
|
[[autodoc]] GemmaForSequenceClassification
|
|
- forward
|
|
|
|
## GemmaForTokenClassification
|
|
|
|
[[autodoc]] GemmaForTokenClassification
|
|
- forward
|
|
|
|
## FlaxGemmaModel
|
|
|
|
[[autodoc]] FlaxGemmaModel
|
|
- __call__
|
|
|
|
## FlaxGemmaForCausalLM
|
|
|
|
[[autodoc]] FlaxGemmaForCausalLM
|
|
- __call__
|