transformers/docs/source/en/model_doc/d_fine.md
Vladislav Bronzov 4abeb50f6e
Add D-FINE Model into Transformers (#36261)
* copy the last changes from broken PR

* small format

* some fixes and refactoring after review

* format

* add config attr for loss

* some fixes and refactoring

* fix copies

* fix style

* add test for d-fine resnet

* fix decoder layer prop

* fix dummies

* format init

* remove extra print

* refactor modeling, move resnet into separate folder

* fix resnet config

* change resnet on hgnet_v2, add clamp into decoder

* fix init

* fix config doc

* fix init

* fix dummies

* fix config docs

* fix hgnet_v2 config typo

* format modular

* add image classification for hgnet, some refactoring

* format tests

* fix dummies

* fix init

* fix style

* fix init for hgnet v2

* fix index.md, add init rnage for hgnet

* fix conversion

* add missing attr to encoder

* add loss for d-fine, add additional output for rt-detr decoder

* tests and docs fixes

* fix rt_detr v2 conversion

* some fixes for loos and decoder output

* some fixes for loss

* small fix for converted modeling

* add n model config, some todo comments for modular

* convert script adjustments and fixes, small refact

* remove extra output for rt_detr

* make some outputs optionsl, fix conversion

* some posr merge fixes

* small fix

* last field fix

* fix not split for hgnet_v2

* disable parallelism test for hgnet_v2 image classification

* skip multi gpu for d-fine

* adjust after merge init

* remove extra comment

* fix repo name references

* small fixes for tests

* Fix checkpoint path

* Fix consistency

* Fixing docs

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-04-29 12:17:55 +01:00

3.9 KiB

D-FINE

Overview

The D-FINE model was proposed in D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement by Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, Feng Wu

The abstract from the paper is the following:

We introduce D-FINE, a powerful real-time object detector that achieves outstanding localization precision by redefining the bounding box regression task in DETR models. D-FINE comprises two key components: Fine-grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation (GO-LSD). FDR transforms the regression process from predicting fixed coordinates to iteratively refining probability distributions, providing a fine-grained intermediate representation that significantly enhances localization accuracy. GO-LSD is a bidirectional optimization strategy that transfers localization knowledge from refined distributions to shallower layers through self-distillation, while also simplifying the residual prediction tasks for deeper layers. Additionally, D-FINE incorporates lightweight optimizations in computationally intensive modules and operations, achieving a better balance between speed and accuracy. Specifically, D-FINE-L / X achieves 54.0% / 55.8% AP on the COCO dataset at 124 / 78 FPS on an NVIDIA T4 GPU. When pretrained on Objects365, D-FINE-L / X attains 57.1% / 59.3% AP, surpassing all existing real-time detectors. Furthermore, our method significantly enhances the performance of a wide range of DETR models by up to 5.3% AP with negligible extra parameters and training costs. Our code and pretrained models: this https URL.

This model was contributed by VladOS95-cyber. The original code can be found here.

Usage tips

>>> import torch
>>> from transformers.image_utils import load_image
>>> from transformers import DFineForObjectDetection, AutoImageProcessor

>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = load_image(url)

>>> image_processor = AutoImageProcessor.from_pretrained("ustc-community/dfine_x_coco")
>>> model = DFineForObjectDetection.from_pretrained("ustc-community/dfine_x_coco")

>>> inputs = image_processor(images=image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> results = image_processor.post_process_object_detection(outputs, target_sizes=[(image.height, image.width)], threshold=0.5)

>>> for result in results:
...     for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
...         score, label = score.item(), label_id.item()
...         box = [round(i, 2) for i in box.tolist()]
...         print(f"{model.config.id2label[label]}: {score:.2f} {box}")
cat: 0.96 [344.49, 23.4, 639.84, 374.27]
cat: 0.96 [11.71, 53.52, 316.64, 472.33]
remote: 0.95 [40.46, 73.7, 175.62, 117.57]
sofa: 0.92 [0.59, 1.88, 640.25, 474.74]
remote: 0.89 [333.48, 77.04, 370.77, 187.3]

DFineConfig

autodoc DFineConfig

DFineModel

autodoc DFineModel - forward

DFineForObjectDetection

autodoc DFineForObjectDetection - forward