
* transformers-cli -> transformers * Chat command works with positional argument * update doc references to transformers-cli * doc headers * deepspeed --------- Co-authored-by: Joao Gante <joao@huggingface.co>
5.1 KiB
MobileBERT
MobileBERT is a lightweight and efficient variant of BERT, specifically designed for resource-limited devices such as mobile phones. It retains BERT's architecture but significantly reduces model size and inference latency while maintaining strong performance on NLP tasks. MobileBERT achieves this through a bottleneck structure and carefully balanced self-attention and feedforward networks. The model is trained by knowledge transfer from a large BERT model with an inverted bottleneck structure.
You can find the original MobileBERT checkpoint under the Google organization.
Tip
Click on the MobileBERT models in the right sidebar for more examples of how to apply MobileBERT to different language tasks.
The example below demonstrates how to predict the [MASK]
token with [Pipeline
], [AutoModel
], and from the command line.
import torch
from transformers import pipeline
pipeline = pipeline(
task="fill-mask",
model="google/mobilebert-uncased",
torch_dtype=torch.float16,
device=0
)
pipeline("The capital of France is [MASK].")
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"google/mobilebert-uncased",
)
model = AutoModelForMaskedLM.from_pretrained(
"google/mobilebert-uncased",
torch_dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
echo -e "The capital of France is [MASK]." | transformers run --task fill-mask --model google/mobilebert-uncased --device 0
Notes
- Inputs should be padded on the right because BERT uses absolute position embeddings.
MobileBertConfig
autodoc MobileBertConfig
MobileBertTokenizer
autodoc MobileBertTokenizer
MobileBertTokenizerFast
autodoc MobileBertTokenizerFast
MobileBert specific outputs
autodoc models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutput
autodoc models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput
MobileBertModel
autodoc MobileBertModel - forward
MobileBertForPreTraining
autodoc MobileBertForPreTraining - forward
MobileBertForMaskedLM
autodoc MobileBertForMaskedLM - forward
MobileBertForNextSentencePrediction
autodoc MobileBertForNextSentencePrediction - forward
MobileBertForSequenceClassification
autodoc MobileBertForSequenceClassification - forward
MobileBertForMultipleChoice
autodoc MobileBertForMultipleChoice - forward
MobileBertForTokenClassification
autodoc MobileBertForTokenClassification - forward
MobileBertForQuestionAnswering
autodoc MobileBertForQuestionAnswering - forward
TFMobileBertModel
autodoc TFMobileBertModel - call
TFMobileBertForPreTraining
autodoc TFMobileBertForPreTraining - call
TFMobileBertForMaskedLM
autodoc TFMobileBertForMaskedLM - call
TFMobileBertForNextSentencePrediction
autodoc TFMobileBertForNextSentencePrediction - call
TFMobileBertForSequenceClassification
autodoc TFMobileBertForSequenceClassification - call
TFMobileBertForMultipleChoice
autodoc TFMobileBertForMultipleChoice - call
TFMobileBertForTokenClassification
autodoc TFMobileBertForTokenClassification - call
TFMobileBertForQuestionAnswering
autodoc TFMobileBertForQuestionAnswering - call