
* add auto-round support * Update src/transformers/quantizers/auto.py Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com> * fix style issue Signed-off-by: wenhuach <wenhuach87@gmail.com> * tiny change * tiny change * refine ut and doc * revert unnecessary change * tiny change * try to fix style issue * try to fix style issue * try to fix style issue * try to fix style issue * try to fix style issue * try to fix style issue * try to fix style issue * fix doc issue * Update tests/quantization/autoround/test_auto_round.py * fix comments * Update tests/quantization/autoround/test_auto_round.py Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update tests/quantization/autoround/test_auto_round.py Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * update doc * Update src/transformers/quantizers/quantizer_auto_round.py Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * update * update * fix * try to fix style issue * Update src/transformers/quantizers/auto.py Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com> * Update docs/source/en/quantization/auto_round.md Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com> * Update docs/source/en/quantization/auto_round.md Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com> * Update docs/source/en/quantization/auto_round.md Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com> * update * fix style issue * update doc * update doc * Refine the doc * refine doc * revert one change * set sym to True by default * Enhance the unit test's robustness. * update * add torch dtype * tiny change * add awq convert test * fix typo * update * fix packing format issue * use one gpu --------- Signed-off-by: wenhuach <wenhuach87@gmail.com> Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com> Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com> Co-authored-by: Shen, Haihao <haihao.shen@intel.com>
2.1 KiB
Executable File
Quantization
Quantization techniques reduce memory and computational costs by representing weights and activations with lower-precision data types like 8-bit integers (int8). This enables loading larger models you normally wouldn't be able to fit into memory, and speeding up inference. Transformers supports the AWQ and GPTQ quantization algorithms and it supports 8-bit and 4-bit quantization with bitsandbytes.
Quantization techniques that aren't supported in Transformers can be added with the [HfQuantizer
] class.
Learn how to quantize models in the Quantization guide.
QuantoConfig
autodoc QuantoConfig
AqlmConfig
autodoc AqlmConfig
VptqConfig
autodoc VptqConfig
AwqConfig
autodoc AwqConfig
EetqConfig
autodoc EetqConfig
GPTQConfig
autodoc GPTQConfig
BitsAndBytesConfig
autodoc BitsAndBytesConfig
HfQuantizer
autodoc quantizers.base.HfQuantizer
HiggsConfig
autodoc HiggsConfig
HqqConfig
autodoc HqqConfig
FbgemmFp8Config
autodoc FbgemmFp8Config
CompressedTensorsConfig
autodoc CompressedTensorsConfig
TorchAoConfig
autodoc TorchAoConfig
BitNetConfig
autodoc BitNetConfig
SpQRConfig
autodoc SpQRConfig
FineGrainedFP8Config
autodoc FineGrainedFP8Config
QuarkConfig
autodoc QuarkConfig
AutoRoundConfig
autodoc AutoRoundConfig