mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* docs: ko: quantization/eetq.md * feat: nmt draft * fix docs: ko: quantization/eetq.md * fix docs: ko: quantization/eetq.md * fix: resolve suggestions Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com> * fix: resolve suggestions * fix: resolve suggsetions --------- Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>
47 lines
2.4 KiB
Markdown
47 lines
2.4 KiB
Markdown
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
# EETQ [[eetq]]
|
|
|
|
[EETQ](https://github.com/NetEase-FuXi/EETQ) 라이브러리는 NVIDIA GPU에 대해 int8 채널별(per-channel) 가중치 전용 양자화(weight-only quantization)을 지원합니다. 고성능 GEMM 및 GEMV 커널은 FasterTransformer 및 TensorRT-LLM에서 가져왔습니다. 교정(calibration) 데이터셋이 필요 없으며, 모델을 사전에 양자화할 필요도 없습니다. 또한, 채널별 양자화(per-channel quantization) 덕분에 정확도 저하가 미미합니다.
|
|
|
|
[릴리스 페이지](https://github.com/NetEase-FuXi/EETQ/releases)에서 eetq를 설치했는지 확인하세요.
|
|
```
|
|
pip install --no-cache-dir https://github.com/NetEase-FuXi/EETQ/releases/download/v1.0.0/EETQ-1.0.0+cu121+torch2.1.2-cp310-cp310-linux_x86_64.whl
|
|
```
|
|
또는 소스 코드 https://github.com/NetEase-FuXi/EETQ 에서 설치할 수 있습니다. EETQ는 CUDA 기능이 8.9 이하이고 7.0 이상이어야 합니다.
|
|
```
|
|
git clone https://github.com/NetEase-FuXi/EETQ.git
|
|
cd EETQ/
|
|
git submodule update --init --recursive
|
|
pip install .
|
|
```
|
|
|
|
비양자화 모델은 "from_pretrained"를 통해 양자화할 수 있습니다.
|
|
```py
|
|
from transformers import AutoModelForCausalLM, EetqConfig
|
|
path = "/path/to/model".
|
|
quantization_config = EetqConfig("int8")
|
|
model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", quantization_config=quantization_config)
|
|
```
|
|
|
|
양자화된 모델은 "save_pretrained"를 통해 저장할 수 있으며, "from_pretrained"를 통해 다시 사용할 수 있습니다.
|
|
|
|
```py
|
|
quant_path = "/path/to/save/quantized/model"
|
|
model.save_pretrained(quant_path)
|
|
model = AutoModelForCausalLM.from_pretrained(quant_path, device_map="auto")
|
|
``` |