
* Update roformer model card * fix example purpose description * fix model description according to the comments * revert changes for autodoc * remove unneeded tags * fix review issues * fix hfoption --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
8.2 KiB
RoFormer
RoFormer introduces Rotary Position Embedding (RoPE) to encode token positions by rotating the inputs in 2D space. This allows a model to track absolute positions and model relative relationships. RoPE can scale to longer sequences, account for the natural decay of token dependencies, and works with the more efficient linear self-attention.
You can find all the RoFormer checkpoints on the Hub.
Tip
Click on the RoFormer models in the right sidebar for more examples of how to apply RoFormer to different language tasks.
The example below demonstrates how to predict the [MASK]
token with [Pipeline
], [AutoModel
], and from the command line.
# uncomment to install rjieba which is needed for the tokenizer
# !pip install rjieba
import torch
from transformers import pipeline
pipe = pipeline(
task="fill-mask",
model="junnyu/roformer_chinese_base",
torch_dtype=torch.float16,
device=0
)
output = pipe("水在零度时会[MASK]")
print(output)
# uncomment to install rjieba which is needed for the tokenizer
# !pip install rjieba
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
model = AutoModelForMaskedLM.from_pretrained(
"junnyu/roformer_chinese_base", torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
input_ids = tokenizer("水在零度时会[MASK]", return_tensors="pt").to(model.device)
outputs = model(**input_ids)
decoded = tokenizer.batch_decode(outputs.logits.argmax(-1), skip_special_tokens=True)
print(decoded)
echo -e "水在零度时会[MASK]" | transformers-cli run --task fill-mask --model junnyu/roformer_chinese_base --device 0
Notes
- The current RoFormer implementation is an encoder-only model. The original code can be found in the ZhuiyiTechnology/roformer repository.
RoFormerConfig
autodoc RoFormerConfig
RoFormerTokenizer
autodoc RoFormerTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
RoFormerTokenizerFast
autodoc RoFormerTokenizerFast - build_inputs_with_special_tokens
RoFormerModel
autodoc RoFormerModel - forward
RoFormerForCausalLM
autodoc RoFormerForCausalLM - forward
RoFormerForMaskedLM
autodoc RoFormerForMaskedLM - forward
RoFormerForSequenceClassification
autodoc RoFormerForSequenceClassification - forward
RoFormerForMultipleChoice
autodoc RoFormerForMultipleChoice - forward
RoFormerForTokenClassification
autodoc RoFormerForTokenClassification - forward
RoFormerForQuestionAnswering
autodoc RoFormerForQuestionAnswering - forward
TFRoFormerModel
autodoc TFRoFormerModel - call
TFRoFormerForMaskedLM
autodoc TFRoFormerForMaskedLM - call
TFRoFormerForCausalLM
autodoc TFRoFormerForCausalLM - call
TFRoFormerForSequenceClassification
autodoc TFRoFormerForSequenceClassification - call
TFRoFormerForMultipleChoice
autodoc TFRoFormerForMultipleChoice - call
TFRoFormerForTokenClassification
autodoc TFRoFormerForTokenClassification - call
TFRoFormerForQuestionAnswering
autodoc TFRoFormerForQuestionAnswering - call
FlaxRoFormerModel
autodoc FlaxRoFormerModel - call
FlaxRoFormerForMaskedLM
autodoc FlaxRoFormerForMaskedLM - call
FlaxRoFormerForSequenceClassification
autodoc FlaxRoFormerForSequenceClassification - call
FlaxRoFormerForMultipleChoice
autodoc FlaxRoFormerForMultipleChoice - call
FlaxRoFormerForTokenClassification
autodoc FlaxRoFormerForTokenClassification - call
FlaxRoFormerForQuestionAnswering
autodoc FlaxRoFormerForQuestionAnswering - call