
* copy the last changes from broken PR * small format * some fixes and refactoring after review * format * add config attr for loss * some fixes and refactoring * fix copies * fix style * add test for d-fine resnet * fix decoder layer prop * fix dummies * format init * remove extra print * refactor modeling, move resnet into separate folder * fix resnet config * change resnet on hgnet_v2, add clamp into decoder * fix init * fix config doc * fix init * fix dummies * fix config docs * fix hgnet_v2 config typo * format modular * add image classification for hgnet, some refactoring * format tests * fix dummies * fix init * fix style * fix init for hgnet v2 * fix index.md, add init rnage for hgnet * fix conversion * add missing attr to encoder * add loss for d-fine, add additional output for rt-detr decoder * tests and docs fixes * fix rt_detr v2 conversion * some fixes for loos and decoder output * some fixes for loss * small fix for converted modeling * add n model config, some todo comments for modular * convert script adjustments and fixes, small refact * remove extra output for rt_detr * make some outputs optionsl, fix conversion * some posr merge fixes * small fix * last field fix * fix not split for hgnet_v2 * disable parallelism test for hgnet_v2 image classification * skip multi gpu for d-fine * adjust after merge init * remove extra comment * fix repo name references * small fixes for tests * Fix checkpoint path * Fix consistency * Fixing docs --------- Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2.8 KiB
HGNet-V2
Overview
A HGNet-V2 (High Performance GPU Net) image classification model. HGNet arhtictecture was proposed in HGNET: A Hierarchical Feature Guided Network for Occupancy Flow Field Prediction by Zhan Chen, Chen Tang, Lu Xiong
The abstract from the HGNET paper is the following:
Predicting the motion of multiple traffic participants has always been one of the most challenging tasks in autonomous driving. The recently proposed occupancy flow field prediction method has shown to be a more effective and scalable representation compared to general trajectory prediction methods. However, in complex multi-agent traffic scenarios, it remains difficult to model the interactions among various factors and the dependencies among prediction outputs at different time steps. In view of this, we propose a transformer-based hierarchical feature guided network (HGNET), which can efficiently extract features of agents and map information from visual and vectorized inputs, modeling multimodal interaction relationships. Second, we design the Feature-Guided Attention (FGAT) module to leverage the potential guiding effects between different prediction targets, thereby improving prediction accuracy. Additionally, to enhance the temporal consistency and causal relationships of the predictions, we propose a Time Series Memory framework to learn the conditional distribution models of the prediction outputs at future time steps from multivariate time series. The results demonstrate that our model exhibits competitive performance, which ranks 3rd in the 2024 Waymo Occupancy and Flow Prediction Challenge.
This model was contributed by VladOS95-cyber. The original code can be found here.
HGNetV2Config
autodoc HGNetV2Config
HGNetV2Backbone
autodoc HGNetV2Backbone - forward
HGNetV2ForImageClassification
autodoc HGNetV2ForImageClassification - forward