transformers/docs/source/en/model_doc/helium.md
Steven Liu c0f8d055ce
[docs] Redesign (#31757)
* toctree

* not-doctested.txt

* collapse sections

* feedback

* update

* rewrite get started sections

* fixes

* fix

* loading models

* fix

* customize models

* share

* fix link

* contribute part 1

* contribute pt 2

* fix toctree

* tokenization pt 1

* Add new model (#32615)

* v1 - working version

* fix

* fix

* fix

* fix

* rename to correct name

* fix title

* fixup

* rename files

* fix

* add copied from on tests

* rename to `FalconMamba` everywhere and fix bugs

* fix quantization + accelerate

* fix copies

* add `torch.compile` support

* fix tests

* fix tests and add slow tests

* copies on config

* merge the latest changes

* fix tests

* add few lines about instruct

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* fix tests

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* "to be not" -> "not to be" (#32636)

* "to be not" -> "not to be"

* Update sam.md

* Update trainer.py

* Update modeling_utils.py

* Update test_modeling_utils.py

* Update test_modeling_utils.py

* fix hfoption tag

* tokenization pt. 2

* image processor

* fix toctree

* backbones

* feature extractor

* fix file name

* processor

* update not-doctested

* update

* make style

* fix toctree

* revision

* make fixup

* fix toctree

* fix

* make style

* fix hfoption tag

* pipeline

* pipeline gradio

* pipeline web server

* add pipeline

* fix toctree

* not-doctested

* prompting

* llm optims

* fix toctree

* fixes

* cache

* text generation

* fix

* chat pipeline

* chat stuff

* xla

* torch.compile

* cpu inference

* toctree

* gpu inference

* agents and tools

* gguf/tiktoken

* finetune

* toctree

* trainer

* trainer pt 2

* optims

* optimizers

* accelerate

* parallelism

* fsdp

* update

* distributed cpu

* hardware training

* gpu training

* gpu training 2

* peft

* distrib debug

* deepspeed 1

* deepspeed 2

* chat toctree

* quant pt 1

* quant pt 2

* fix toctree

* fix

* fix

* quant pt 3

* quant pt 4

* serialization

* torchscript

* scripts

* tpu

* review

* model addition timeline

* modular

* more reviews

* reviews

* fix toctree

* reviews reviews

* continue reviews

* more reviews

* modular transformers

* more review

* zamba2

* fix

* all frameworks

* pytorch

* supported model frameworks

* flashattention

* rm check_table

* not-doctested.txt

* rm check_support_list.py

* feedback

* updates/feedback

* review

* feedback

* fix

* update

* feedback

* updates

* update

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2025-03-03 10:33:46 -08:00

5.2 KiB

Helium

PyTorch FlashAttention SDPA

Overview

Helium was proposed in Announcing Helium-1 Preview by the Kyutai Team.

Helium-1 preview is a lightweight language model with 2B parameters, targeting edge and mobile devices. It supports the following languages: English, French, German, Italian, Portuguese, Spanish.

  • Developed by: Kyutai
  • Model type: Large Language Model
  • Language(s) (NLP): English, French, German, Italian, Portuguese, Spanish
  • License: CC-BY 4.0

Evaluation

Testing Data

The model was evaluated on MMLU, TriviaQA, NaturalQuestions, ARC Easy & Challenge, Open Book QA, Common Sense QA, Physical Interaction QA, Social Interaction QA, HellaSwag, WinoGrande, Multilingual Knowledge QA, FLORES 200.

Metrics

We report accuracy on MMLU, ARC, OBQA, CSQA, PIQA, SIQA, HellaSwag, WinoGrande. We report exact match on TriviaQA, NQ and MKQA. We report BLEU on FLORES.

English Results

Benchmark Helium-1 Preview HF SmolLM2 (1.7B) Gemma-2 (2.6B) Llama-3.2 (3B) Qwen2.5 (1.5B)
MMLU 51.2 50.4 53.1 56.6 61.0
NQ 17.3 15.1 17.7 22.0 13.1
TQA 47.9 45.4 49.9 53.6 35.9
ARC E 80.9 81.8 81.1 84.6 89.7
ARC C 62.7 64.7 66.0 69.0 77.2
OBQA 63.8 61.4 64.6 68.4 73.8
CSQA 65.6 59.0 64.4 65.4 72.4
PIQA 77.4 77.7 79.8 78.9 76.0
SIQA 64.4 57.5 61.9 63.8 68.7
HS 69.7 73.2 74.7 76.9 67.5
WG 66.5 65.6 71.2 72.0 64.8
Average 60.7 59.3 62.2 64.7 63.6

Multilingual Results

Language Benchmark Helium-1 Preview HF SmolLM2 (1.7B) Gemma-2 (2.6B) Llama-3.2 (3B) Qwen2.5 (1.5B)
German MMLU 45.6 35.3 45.0 47.5 49.5
ARC C 56.7 38.4 54.7 58.3 60.2
HS 53.5 33.9 53.4 53.7 42.8
MKQA 16.1 7.1 18.9 20.2 10.4
Spanish MMLU 46.5 38.9 46.2 49.6 52.8
ARC C 58.3 43.2 58.8 60.0 68.1
HS 58.6 40.8 60.5 61.1 51.4
MKQA 16.0 7.9 18.5 20.6 10.6

Technical Specifications

Model Architecture and Objective

Hyperparameter Value
Layers 24
Heads 20
Model dimension 2560
MLP dimension 7040
Context size 4096
Theta RoPE 100,000

Tips:

Usage tips

Helium can be found on the Huggingface Hub

In the following, we demonstrate how to use helium-1-preview for the inference.

>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto

>>> model = AutoModelForCausalLM.from_pretrained("kyutai/helium-1-preview-2b", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("kyutai/helium-1-preview-2b")

>>> prompt = "Give me a short introduction to large language model."

>>> model_inputs = tokenizer(prompt, return_tensors="pt").to(device)

>>> generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True)

>>> generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]

>>> response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

HeliumConfig

autodoc HeliumConfig

HeliumModel

autodoc HeliumModel - forward

HeliumForCausalLM

autodoc HeliumForCausalLM - forward

HeliumForSequenceClassification

autodoc HeliumForSequenceClassification - forward

HeliumForTokenClassification

autodoc HeliumForTokenClassification - forward