transformers/docs/source/en/model_doc/dpr.md
Steven Liu c0f8d055ce
[docs] Redesign (#31757)
* toctree

* not-doctested.txt

* collapse sections

* feedback

* update

* rewrite get started sections

* fixes

* fix

* loading models

* fix

* customize models

* share

* fix link

* contribute part 1

* contribute pt 2

* fix toctree

* tokenization pt 1

* Add new model (#32615)

* v1 - working version

* fix

* fix

* fix

* fix

* rename to correct name

* fix title

* fixup

* rename files

* fix

* add copied from on tests

* rename to `FalconMamba` everywhere and fix bugs

* fix quantization + accelerate

* fix copies

* add `torch.compile` support

* fix tests

* fix tests and add slow tests

* copies on config

* merge the latest changes

* fix tests

* add few lines about instruct

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* fix tests

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* "to be not" -> "not to be" (#32636)

* "to be not" -> "not to be"

* Update sam.md

* Update trainer.py

* Update modeling_utils.py

* Update test_modeling_utils.py

* Update test_modeling_utils.py

* fix hfoption tag

* tokenization pt. 2

* image processor

* fix toctree

* backbones

* feature extractor

* fix file name

* processor

* update not-doctested

* update

* make style

* fix toctree

* revision

* make fixup

* fix toctree

* fix

* make style

* fix hfoption tag

* pipeline

* pipeline gradio

* pipeline web server

* add pipeline

* fix toctree

* not-doctested

* prompting

* llm optims

* fix toctree

* fixes

* cache

* text generation

* fix

* chat pipeline

* chat stuff

* xla

* torch.compile

* cpu inference

* toctree

* gpu inference

* agents and tools

* gguf/tiktoken

* finetune

* toctree

* trainer

* trainer pt 2

* optims

* optimizers

* accelerate

* parallelism

* fsdp

* update

* distributed cpu

* hardware training

* gpu training

* gpu training 2

* peft

* distrib debug

* deepspeed 1

* deepspeed 2

* chat toctree

* quant pt 1

* quant pt 2

* fix toctree

* fix

* fix

* quant pt 3

* quant pt 4

* serialization

* torchscript

* scripts

* tpu

* review

* model addition timeline

* modular

* more reviews

* reviews

* fix toctree

* reviews reviews

* continue reviews

* more reviews

* modular transformers

* more review

* zamba2

* fix

* all frameworks

* pytorch

* supported model frameworks

* flashattention

* rm check_table

* not-doctested.txt

* rm check_support_list.py

* feedback

* updates/feedback

* review

* feedback

* fix

* update

* feedback

* updates

* update

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2025-03-03 10:33:46 -08:00

126 lines
3.7 KiB
Markdown

<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DPR
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
Dense Passage Retrieval (DPR) is a set of tools and models for state-of-the-art open-domain Q&A research. It was
introduced in [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by
Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih.
The abstract from the paper is the following:
*Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional
sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can
be practically implemented using dense representations alone, where embeddings are learned from a small number of
questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets,
our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage
retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA
benchmarks.*
This model was contributed by [lhoestq](https://huggingface.co/lhoestq). The original code can be found [here](https://github.com/facebookresearch/DPR).
## Usage tips
- DPR consists in three models:
* Question encoder: encode questions as vectors
* Context encoder: encode contexts as vectors
* Reader: extract the answer of the questions inside retrieved contexts, along with a relevance score (high if the inferred span actually answers the question).
## DPRConfig
[[autodoc]] DPRConfig
## DPRContextEncoderTokenizer
[[autodoc]] DPRContextEncoderTokenizer
## DPRContextEncoderTokenizerFast
[[autodoc]] DPRContextEncoderTokenizerFast
## DPRQuestionEncoderTokenizer
[[autodoc]] DPRQuestionEncoderTokenizer
## DPRQuestionEncoderTokenizerFast
[[autodoc]] DPRQuestionEncoderTokenizerFast
## DPRReaderTokenizer
[[autodoc]] DPRReaderTokenizer
## DPRReaderTokenizerFast
[[autodoc]] DPRReaderTokenizerFast
## DPR specific outputs
[[autodoc]] models.dpr.modeling_dpr.DPRContextEncoderOutput
[[autodoc]] models.dpr.modeling_dpr.DPRQuestionEncoderOutput
[[autodoc]] models.dpr.modeling_dpr.DPRReaderOutput
<frameworkcontent>
<pt>
## DPRContextEncoder
[[autodoc]] DPRContextEncoder
- forward
## DPRQuestionEncoder
[[autodoc]] DPRQuestionEncoder
- forward
## DPRReader
[[autodoc]] DPRReader
- forward
</pt>
<tf>
## TFDPRContextEncoder
[[autodoc]] TFDPRContextEncoder
- call
## TFDPRQuestionEncoder
[[autodoc]] TFDPRQuestionEncoder
- call
## TFDPRReader
[[autodoc]] TFDPRReader
- call
</tf>
</frameworkcontent>