transformers/docs/source/en/model_doc/dbrx.md
Steven Liu c0f8d055ce
[docs] Redesign (#31757)
* toctree

* not-doctested.txt

* collapse sections

* feedback

* update

* rewrite get started sections

* fixes

* fix

* loading models

* fix

* customize models

* share

* fix link

* contribute part 1

* contribute pt 2

* fix toctree

* tokenization pt 1

* Add new model (#32615)

* v1 - working version

* fix

* fix

* fix

* fix

* rename to correct name

* fix title

* fixup

* rename files

* fix

* add copied from on tests

* rename to `FalconMamba` everywhere and fix bugs

* fix quantization + accelerate

* fix copies

* add `torch.compile` support

* fix tests

* fix tests and add slow tests

* copies on config

* merge the latest changes

* fix tests

* add few lines about instruct

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* fix tests

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* "to be not" -> "not to be" (#32636)

* "to be not" -> "not to be"

* Update sam.md

* Update trainer.py

* Update modeling_utils.py

* Update test_modeling_utils.py

* Update test_modeling_utils.py

* fix hfoption tag

* tokenization pt. 2

* image processor

* fix toctree

* backbones

* feature extractor

* fix file name

* processor

* update not-doctested

* update

* make style

* fix toctree

* revision

* make fixup

* fix toctree

* fix

* make style

* fix hfoption tag

* pipeline

* pipeline gradio

* pipeline web server

* add pipeline

* fix toctree

* not-doctested

* prompting

* llm optims

* fix toctree

* fixes

* cache

* text generation

* fix

* chat pipeline

* chat stuff

* xla

* torch.compile

* cpu inference

* toctree

* gpu inference

* agents and tools

* gguf/tiktoken

* finetune

* toctree

* trainer

* trainer pt 2

* optims

* optimizers

* accelerate

* parallelism

* fsdp

* update

* distributed cpu

* hardware training

* gpu training

* gpu training 2

* peft

* distrib debug

* deepspeed 1

* deepspeed 2

* chat toctree

* quant pt 1

* quant pt 2

* fix toctree

* fix

* fix

* quant pt 3

* quant pt 4

* serialization

* torchscript

* scripts

* tpu

* review

* model addition timeline

* modular

* more reviews

* reviews

* fix toctree

* reviews reviews

* continue reviews

* more reviews

* modular transformers

* more review

* zamba2

* fix

* all frameworks

* pytorch

* supported model frameworks

* flashattention

* rm check_table

* not-doctested.txt

* rm check_support_list.py

* feedback

* updates/feedback

* review

* feedback

* fix

* update

* feedback

* updates

* update

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2025-03-03 10:33:46 -08:00

126 lines
5.9 KiB
Markdown

<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DBRX
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
DBRX is a [transformer-based](https://www.isattentionallyouneed.com/) decoder-only large language model (LLM) that was trained using next-token prediction.
It uses a *fine-grained* mixture-of-experts (MoE) architecture with 132B total parameters of which 36B parameters are active on any input.
It was pre-trained on 12T tokens of text and code data.
Compared to other open MoE models like Mixtral-8x7B and Grok-1, DBRX is fine-grained, meaning it uses a larger number of smaller experts. DBRX has 16 experts and chooses 4, while Mixtral-8x7B and Grok-1 have 8 experts and choose 2.
This provides 65x more possible combinations of experts and we found that this improves model quality.
DBRX uses rotary position encodings (RoPE), gated linear units (GLU), and grouped query attention (GQA).
It is a BPE based model and uses the GPT-4 tokenizer as described in the [tiktoken](https://github.com/openai/tiktoken) repository.
We made these choices based on exhaustive evaluation and scaling experiments.
DBRX was pretrained on 12T tokens of carefully curated data and a maximum context length of 32K tokens.
We estimate that this data is at least 2x better token-for-token than the data we used to pretrain the MPT family of models.
This new dataset was developed using the full suite of Databricks tools, including Apache Spark™ and Databricks notebooks for data processing, and Unity Catalog for data management and governance.
We used curriculum learning for pretraining, changing the data mix during training in ways we found to substantially improve model quality.
More detailed information about DBRX Instruct and DBRX Base can be found in our [technical blog post](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm).
This model was contributed by [eitan-turok](https://huggingface.co/eitanturok) and [abhi-db](https://huggingface.co/abhi-db). The original code can be found [here](https://github.com/databricks/dbrx-instruct), though this may not be up to date.
## Usage Examples
The `generate()` method can be used to generate text using DBRX. You can generate using the standard attention implementation, flash-attention, and the PyTorch scaled dot product attention. The last two attention implementations give speed ups.
```python
from transformers import DbrxForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
model = DbrxForCausalLM.from_pretrained(
"databricks/dbrx-instruct",
device_map="auto",
torch_dtype=torch.bfloat16,
token="YOUR_HF_TOKEN",
)
input_text = "What does it take to build a great LLM?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))
```
If you have flash-attention installed (`pip install flash-attn`), it is possible to generate faster. (The HuggingFace documentation for flash-attention can be found [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2).)
```python
from transformers import DbrxForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
model = DbrxForCausalLM.from_pretrained(
"databricks/dbrx-instruct",
device_map="auto",
torch_dtype=torch.bfloat16,
token="YOUR_HF_TOKEN",
attn_implementation="flash_attention_2",
)
input_text = "What does it take to build a great LLM?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))
```
You can also generate faster using the PyTorch scaled dot product attention. (The HuggingFace documentation for scaled dot product attention can be found [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#pytorch-scaled-dot-product-attention).)
```python
from transformers import DbrxForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", token="YOUR_HF_TOKEN")
model = DbrxForCausalLM.from_pretrained(
"databricks/dbrx-instruct",
device_map="auto",
torch_dtype=torch.bfloat16,
token="YOUR_HF_TOKEN",
attn_implementation="sdpa",
)
input_text = "What does it take to build a great LLM?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=200)
print(tokenizer.decode(outputs[0]))
```
## DbrxConfig
[[autodoc]] DbrxConfig
## DbrxModel
[[autodoc]] DbrxModel
- forward
## DbrxForCausalLM
[[autodoc]] DbrxForCausalLM
- forward