transformers/docs/source/en/model_doc/blip.md
Lysandre Debut 54a123f068
Simplify soft dependencies and update the dummy-creation process (#36827)
* Reverse dependency map shouldn't be created when test_all is set

* [test_all] Remove dummies

* Modular fixes

* Update utils/check_repo.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* [test_all] Better docs

* [test_all] Update src/transformers/commands/chat.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* [test_all] Remove deprecated AdaptiveEmbeddings from the tests

* [test_all] Doc builder

* [test_all] is_dummy

* [test_all] Import utils

* [test_all] Doc building should not require all deps

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-04-11 11:08:36 +02:00

4.6 KiB

BLIP

PyTorch TensorFlow

Overview

The BLIP model was proposed in BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.

BLIP is a model that is able to perform various multi-modal tasks including:

  • Visual Question Answering
  • Image-Text retrieval (Image-text matching)
  • Image Captioning

The abstract from the paper is the following:

Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.

BLIP.gif

This model was contributed by ybelkada. The original code can be found here.

Resources

  • Jupyter notebook on how to fine-tune BLIP for image captioning on a custom dataset

BlipConfig

autodoc BlipConfig - from_text_vision_configs

BlipTextConfig

autodoc BlipTextConfig

BlipVisionConfig

autodoc BlipVisionConfig

BlipProcessor

autodoc BlipProcessor

BlipImageProcessor

autodoc BlipImageProcessor - preprocess

BlipImageProcessorFast

autodoc BlipImageProcessorFast - preprocess

BlipModel

BlipModel is going to be deprecated in future versions, please use BlipForConditionalGeneration, BlipForImageTextRetrieval or BlipForQuestionAnswering depending on your usecase.

autodoc BlipModel - forward - get_text_features - get_image_features

BlipTextModel

autodoc BlipTextModel - forward

BlipTextLMHeadModel

autodoc BlipTextLMHeadModel

  • forward

BlipVisionModel

autodoc BlipVisionModel - forward

BlipForConditionalGeneration

autodoc BlipForConditionalGeneration - forward

BlipForImageTextRetrieval

autodoc BlipForImageTextRetrieval - forward

BlipForQuestionAnswering

autodoc BlipForQuestionAnswering - forward

TFBlipModel

autodoc TFBlipModel - call - get_text_features - get_image_features

TFBlipTextModel

autodoc TFBlipTextModel - call

TFBlipTextLMHeadModel

autodoc TFBlipTextLMHeadModel

  • forward

TFBlipVisionModel

autodoc TFBlipVisionModel - call

TFBlipForConditionalGeneration

autodoc TFBlipForConditionalGeneration - call

TFBlipForImageTextRetrieval

autodoc TFBlipForImageTextRetrieval - call

TFBlipForQuestionAnswering

autodoc TFBlipForQuestionAnswering - call