mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-23 22:38:58 +06:00
![]() * initial documentation * rename mask to attention_mask * smaller tests * fixup * fix copies * move to time series section * sort docs * isort fix * batch_size is not a configuration * rename to TimesFMModelForPrediction * initial script * add check_outputs * remove dropout_rate * works with torch.Tensor inputs * rename script * fix docstrings * fix freq when window_size is given * add loss * fix _quantile_loss * formatting * fix isort * add weight init * add support for sdpa and flash_attention_2 * fixes for flash_attention * formatting * remove flash_attention * fix tests * fix file name * fix quantile loss * added initial TimesFMModelIntegrationTests * fix formatting * fix import order * fix _quantile_loss * add doc for SDPA * use timesfm 2.0 * bug fix in timesfm decode function. * compare mean forecasts * refactor type hints, use CamelCase * consolidate decode func * more readable code for weight conversion * fix-copies * simpler init * renaem TimesFmMLP * use T5LayerNorm * fix tests * use initializer_range * TimesFmModel instead of TimesFmDecoder * TimesFmPositionalEmbedding takes config for its init * 2.0-500m-pytorch default configs * use TimesFmModel * fix formatting * ignore TimesFmModel for testing * fix docstring * override generate as its not needed * add doc strings * fix logging * add docstrings to output data classes * initial copy from t5 * added config and attention layers * add TimesFMPositionalEmbedding * calcuate scale_factor once * add more configs and TimesFMResidualBlock * fix input_dims * standardize code format with black * remove unneeded modules * TimesFM Model * order of imports * copy from Google official implementation * remove covariate forecasting * Adapting TimesFM to HF format * restructing in progress * adapted to HF convention * timesfm test * the model runs * fixing unit tests * fixing unit tests in progress * add post_init * do not change TimesFMOutput * fixing unit tests * all unit tests passed * remove timesfm_layers * add intermediate_size and initialize with config * initial documentation * rename mask to attention_mask * smaller tests * fixup * fix copies * move to time series section * sort docs * isort fix * batch_size is not a configuration * rename to TimesFMModelForPrediction * initial script * add check_outputs * remove dropout_rate * works with torch.Tensor inputs * rename script * fix docstrings * fix freq when window_size is given * add loss * fix _quantile_loss * formatting * fix isort * add weight init * add support for sdpa and flash_attention_2 * fixes for flash_attention * formatting * remove flash_attention * fix tests * fix file name * fix quantile loss * added initial TimesFMModelIntegrationTests * fix formatting * fix import order * fix _quantile_loss * add doc for SDPA * use timesfm 2.0 * bug fix in timesfm decode function. * compare mean forecasts * refactor type hints, use CamelCase * consolidate decode func * more readable code for weight conversion * fix-copies * simpler init * renaem TimesFmMLP * use T5LayerNorm * fix tests * use initializer_range * TimesFmModel instead of TimesFmDecoder * TimesFmPositionalEmbedding takes config for its init * 2.0-500m-pytorch default configs * use TimesFmModel * fix formatting * ignore TimesFmModel for testing * fix docstring * override generate as its not needed * add doc strings * fix logging * add docstrings to output data classes * add _CHECKPOINT_FOR_DOC * fix comments * Revert "fix comments" This reverts commit |
||
---|---|---|
.. | ||
internal | ||
main_classes | ||
model_doc | ||
quantization | ||
tasks | ||
_config.py | ||
_redirects.yml | ||
_toctree.yml | ||
accelerate.md | ||
add_new_model.md | ||
add_new_pipeline.md | ||
agents.md | ||
attention_interface.md | ||
attention.md | ||
backbones.md | ||
cache_explanation.md | ||
chat_extras.md | ||
chat_templating_multimodal.md | ||
chat_templating_writing.md | ||
chat_templating.md | ||
community.md | ||
contributing.md | ||
conversations.md | ||
custom_models.md | ||
debugging.md | ||
deepspeed.md | ||
executorch.md | ||
fast_tokenizers.md | ||
feature_extractors.md | ||
fsdp.md | ||
generation_features.md | ||
generation_strategies.md | ||
gguf.md | ||
glossary.md | ||
gpu_selection.md | ||
how_to_hack_models.md | ||
hpo_train.md | ||
image_processors.md | ||
index.md | ||
installation.md | ||
kv_cache.md | ||
llm_optims.md | ||
llm_tutorial_optimization.md | ||
llm_tutorial.md | ||
model_memory_anatomy.md | ||
model_sharing.md | ||
model_summary.md | ||
models.md | ||
modular_transformers.md | ||
notebooks.md | ||
optimizers.md | ||
pad_truncation.md | ||
peft.md | ||
perf_hardware.md | ||
perf_infer_cpu.md | ||
perf_infer_gpu_multi.md | ||
perf_infer_gpu_one.md | ||
perf_torch_compile.md | ||
perf_train_cpu_many.md | ||
perf_train_cpu.md | ||
perf_train_gpu_many.md | ||
perf_train_gpu_one.md | ||
perf_train_special.md | ||
perf_train_tpu_tf.md | ||
perplexity.md | ||
philosophy.md | ||
pipeline_gradio.md | ||
pipeline_tutorial.md | ||
pipeline_webserver.md | ||
pr_checks.md | ||
processors.md | ||
quicktour.md | ||
run_scripts.md | ||
serialization.md | ||
serving.md | ||
task_summary.md | ||
tasks_explained.md | ||
testing.md | ||
tf_xla.md | ||
tflite.md | ||
tokenizer_summary.md | ||
tools.md | ||
torchscript.md | ||
trainer.md | ||
training.md | ||
troubleshooting.md |