mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 05:40:05 +06:00

* adding blog post to model doc * Update docs/source/en/model_doc/timm_wrapper.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * review suggestions * review suggestions --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2.4 KiB
2.4 KiB
TimmWrapper
Overview
Helper class to enable loading timm models to be used with the transformers library and its autoclasses.
>>> import torch
>>> from PIL import Image
>>> from urllib.request import urlopen
>>> from transformers import AutoModelForImageClassification, AutoImageProcessor
>>> # Load image
>>> image = Image.open(urlopen(
... 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
... ))
>>> # Load model and image processor
>>> checkpoint = "timm/resnet50.a1_in1k"
>>> image_processor = AutoImageProcessor.from_pretrained(checkpoint)
>>> model = AutoModelForImageClassification.from_pretrained(checkpoint).eval()
>>> # Preprocess image
>>> inputs = image_processor(image)
>>> # Forward pass
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # Get top 5 predictions
>>> top5_probabilities, top5_class_indices = torch.topk(logits.softmax(dim=1) * 100, k=5)
Resources:
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with TimmWrapper.
Tip
For a more detailed overview please read the official blog post on the timm integration.
TimmWrapperConfig
autodoc TimmWrapperConfig
TimmWrapperImageProcessor
autodoc TimmWrapperImageProcessor - preprocess
TimmWrapperModel
autodoc TimmWrapperModel - forward
TimmWrapperForImageClassification
autodoc TimmWrapperForImageClassification - forward