transformers/docs/source/en/model_doc/got_ocr2.md
Yoni Gozlan 2b46943195
Add GOT-OCR 2.0 to Transformers (#34721)
* init modular got_ocr2

* Get correct got_ocr architecture

* add processing

* run modular with processing

* add working inference

* apply modular

* Refactor and fix style

* Refactor, cleanup, fix style

* fix init order

* Fix docs

* add base modeling tests

* fix style and consistency

* rename doc file

* fix repo consistency

* fix inference with box

* add image processing and support for crop_to_multi_page

* Fix batch inference

* add tests

* fixup

* fix slow test

* fix docstrings

* Add model doc

* update to new init

* fix input autocast pixel_values dtype

* update doc

* move doc to multimodal

* Reformat crop_image_to_patches and add docstrings

* Fix example in forward docstring

* Address Pablo review

* [run slow] got_ocr2

* remove defaults defined twice

* apply modular

* add torch_device to integration tests

* update modular

* follow-up Pavel review

* add device variable in doc

* fix doc multi-page

* Force eager attention for vision encoder to avoid attn implementation conflict

* revert qwen2vl doc changes

* use Qwen2ForCausalLM instead of Qwen2Model

* make fixup

* refactor gotocr2 to llava style

* uniformize function names and reduce checks

* final nits

* fix pixel_values dtype error

* change checkpoint names

* fix modular
2025-01-31 11:28:13 -05:00

13 KiB
Raw Blame History

GOT-OCR2

Overview

The GOT-OCR2 model was proposed in General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model by Haoran Wei, Chenglong Liu, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, Zheng Ge, Liang Zhao, Jianjian Sun, Yuang Peng, Chunrui Han, Xiangyu Zhang.

The abstract from the paper is the following:

Traditional OCR systems (OCR-1.0) are increasingly unable to meet peoplesnusage due to the growing demand for intelligent processing of man-made opticalncharacters. In this paper, we collectively refer to all artificial optical signals (e.g., plain texts, math/molecular formulas, tables, charts, sheet music, and even geometric shapes) as "characters" and propose the General OCR Theory along with an excellent model, namely GOT, to promote the arrival of OCR-2.0. The GOT, with 580M parameters, is a unified, elegant, and end-to-end model, consisting of a high-compression encoder and a long-contexts decoder. As an OCR-2.0 model, GOT can handle all the above "characters" under various OCR tasks. On the input side, the model supports commonly used scene- and document-style images in slice and whole-page styles. On the output side, GOT can generate plain or formatted results (markdown/tikz/smiles/kern) via an easy prompt. Besides, the model enjoys interactive OCR features, i.e., region-level recognition guided by coordinates or colors. Furthermore, we also adapt dynamic resolution and multipage OCR technologies to GOT for better practicality. In experiments, we provide sufficient results to prove the superiority of our model.

drawing

GOT-OCR2 training stages. Taken from the original paper.

Tips:

GOT-OCR2 works on a wide range of tasks, including plain document OCR, scene text OCR, formatted document OCR, and even OCR for tables, charts, mathematical formulas, geometric shapes, molecular formulas and sheet music. While this implementation of the model will only output plain text, the outputs can be further processed to render the desired format, with packages like pdftex, mathpix, matplotlib, tikz, verovio or pyecharts. The model can also be used for interactive OCR, where the user can specify the region to be recognized by providing the coordinates or the color of the region's bounding box.

This model was contributed by yonigozlan. The original code can be found here.

Usage example

Plain text inference

>>> from transformers import AutoProcessor, AutoModelForImageTextToText

>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")

>>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/image_ocr.jpg"
>>> inputs = processor(image, return_tensors="pt").to(device)

>>> generate_ids = model.generate(
...     **inputs,
...     do_sample=False,
...     tokenizer=processor.tokenizer,
...     stop_strings="<|im_end|>",
...     max_new_tokens=4096,
... )

>>> processor.decode(generate_ids[0, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
"R&D QUALITY IMPROVEMENT\nSUGGESTION/SOLUTION FORM\nName/Phone Ext. : (...)"

Plain text inference batched

>>> from transformers import AutoProcessor, AutoModelForImageTextToText

>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")

>>> image1 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
>>> image2 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/image_ocr.jpg"

>>> inputs = processor([image1, image2], return_tensors="pt").to(device)

>>> generate_ids = model.generate(
...     **inputs,
...     do_sample=False,
...     tokenizer=processor.tokenizer,
...     stop_strings="<|im_end|>",
...     max_new_tokens=4,
... )

>>> processor.batch_decode(generate_ids[:, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
["Reducing the number", "R&D QUALITY"]

Formatted text inference

GOT-OCR2 can also generate formatted text, such as markdown or LaTeX. Here is an example of how to generate formatted text:

>>> from transformers import AutoProcessor, AutoModelForImageTextToText

>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")

>>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/latex.png"
>>> inputs = processor(image, return_tensors="pt", format=True).to(device)

>>> generate_ids = model.generate(
...     **inputs,
...     do_sample=False,
...     tokenizer=processor.tokenizer,
...     stop_strings="<|im_end|>",
...     max_new_tokens=4096,
... )

>>> processor.decode(generate_ids[0, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
"\\author{\nHanwen Jiang* \\(\\quad\\) Arjun Karpur \\({ }^{\\dagger} \\quad\\) Bingyi Cao \\({ }^{\\dagger} \\quad\\) (...)"

Inference on multiple pages

Although it might be reasonable in most cases to use a “for loop” for multi-page processing, some text data with formatting across several pages make it necessary to process all pages at once. GOT introduces a multi-page OCR (without “for loop”) feature, where multiple pages can be processed by the model at once, whith the output being one continuous text. Here is an example of how to process multiple pages at once:

>>> from transformers import AutoProcessor, AutoModelForImageTextToText

>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")

>>> image1 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/page1.png"
>>> image2 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/page2.png"
>>> inputs = processor([image1, image2], return_tensors="pt", multi_page=True, format=True).to(device)

>>> generate_ids = model.generate(
...     **inputs,
...     do_sample=False,
...     tokenizer=processor.tokenizer,
...     stop_strings="<|im_end|>",
...     max_new_tokens=4096,
... )

>>> processor.decode(generate_ids[0, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
"\\title{\nGeneral OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model\n}\n\\author{\nHaoran Wei (...)"

Inference on cropped patches

GOT supports a 1024×1024 input resolution, which is sufficient for most OCR tasks, such as scene OCR or processing A4-sized PDF pages. However, certain scenarios, like horizontally stitched two-page PDFs commonly found in academic papers or images with unusual aspect ratios, can lead to accuracy issues when processed as a single image. To address this, GOT can dynamically crop an image into patches, process them all at once, and merge the results for better accuracy with such inputs. Here is an example of how to process cropped patches:

>>> import torch
>>> from transformers import AutoProcessor, AutoModelForImageTextToText

>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", torch_dtype=torch.bfloat16, device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")

>>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/one_column.png"
>>> inputs = processor(image, return_tensors="pt", format=True, crop_to_patches=True, max_patches=3).to(device)

>>> generate_ids = model.generate(
...     **inputs,
...     do_sample=False,
...     tokenizer=processor.tokenizer,
...     stop_strings="<|im_end|>",
...     max_new_tokens=4096,
... )

>>> processor.decode(generate_ids[0, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
"on developing architectural improvements to make learnable matching methods generalize.\nMotivated by the above observations, (...)"

Inference on a specific region

GOT supports interactive OCR, where the user can specify the region to be recognized by providing the coordinates or the color of the region's bounding box. Here is an example of how to process a specific region:

>>> from transformers import AutoProcessor, AutoModelForImageTextToText

>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")

>>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
>>> inputs = processor(image, return_tensors="pt", color="green").to(device) # or box=[x1, y1, x2, y2] for coordinates (image pixels)

>>> generate_ids = model.generate(
...     **inputs,
...     do_sample=False,
...     tokenizer=processor.tokenizer,
...     stop_strings="<|im_end|>",
...     max_new_tokens=4096,
... )

>>> processor.decode(generate_ids[0, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
"You should keep in mind what features from the module should be used, especially \nwhen youre planning to sell a template."

Inference on general OCR data example: sheet music

Although this implementation of the model will only output plain text, the outputs can be further processed to render the desired format, with packages like pdftex, mathpix, matplotlib, tikz, verovio or pyecharts. Here is an example of how to process sheet music:

>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> import verovio

>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")

>>> image = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/sheet_music.png"
>>> inputs = processor(image, return_tensors="pt", format=True).to(device)

>>> generate_ids = model.generate(
...     **inputs,
...     do_sample=False,
...     tokenizer=processor.tokenizer,
...     stop_strings="<|im_end|>",
...     max_new_tokens=4096,
... )

>>> outputs = processor.decode(generate_ids[0, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
>>> tk = verovio.toolkit()
>>> tk.loadData(outputs)
>>> tk.setOptions(
...     {
...         "pageWidth": 2100,
...         "pageHeight": 800,
...         "footer": "none",
...         "barLineWidth": 0.5,
...         "beamMaxSlope": 15,
...         "staffLineWidth": 0.2,
...         "spacingStaff": 6,
...     }
... )
>>> tk.getPageCount()
>>> svg = tk.renderToSVG()
>>> svg = svg.replace('overflow="inherit"', 'overflow="visible"')
>>> with open("output.svg", "w") as f:
>>>     f.write(svg)

drawing

GotOcr2Config

autodoc GotOcr2Config

GotOcr2VisionConfig

autodoc GotOcr2VisionConfig

GotOcr2ImageProcessor

autodoc GotOcr2ImageProcessor

GotOcr2Processor

autodoc GotOcr2Processor

GotOcr2ForConditionalGeneration

autodoc GotOcr2ForConditionalGeneration - forward