transformers/docs/source/en/model_doc/wav2vec2-conformer.md
Steven Liu c0f8d055ce
[docs] Redesign (#31757)
* toctree

* not-doctested.txt

* collapse sections

* feedback

* update

* rewrite get started sections

* fixes

* fix

* loading models

* fix

* customize models

* share

* fix link

* contribute part 1

* contribute pt 2

* fix toctree

* tokenization pt 1

* Add new model (#32615)

* v1 - working version

* fix

* fix

* fix

* fix

* rename to correct name

* fix title

* fixup

* rename files

* fix

* add copied from on tests

* rename to `FalconMamba` everywhere and fix bugs

* fix quantization + accelerate

* fix copies

* add `torch.compile` support

* fix tests

* fix tests and add slow tests

* copies on config

* merge the latest changes

* fix tests

* add few lines about instruct

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* fix tests

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* "to be not" -> "not to be" (#32636)

* "to be not" -> "not to be"

* Update sam.md

* Update trainer.py

* Update modeling_utils.py

* Update test_modeling_utils.py

* Update test_modeling_utils.py

* fix hfoption tag

* tokenization pt. 2

* image processor

* fix toctree

* backbones

* feature extractor

* fix file name

* processor

* update not-doctested

* update

* make style

* fix toctree

* revision

* make fixup

* fix toctree

* fix

* make style

* fix hfoption tag

* pipeline

* pipeline gradio

* pipeline web server

* add pipeline

* fix toctree

* not-doctested

* prompting

* llm optims

* fix toctree

* fixes

* cache

* text generation

* fix

* chat pipeline

* chat stuff

* xla

* torch.compile

* cpu inference

* toctree

* gpu inference

* agents and tools

* gguf/tiktoken

* finetune

* toctree

* trainer

* trainer pt 2

* optims

* optimizers

* accelerate

* parallelism

* fsdp

* update

* distributed cpu

* hardware training

* gpu training

* gpu training 2

* peft

* distrib debug

* deepspeed 1

* deepspeed 2

* chat toctree

* quant pt 1

* quant pt 2

* fix toctree

* fix

* fix

* quant pt 3

* quant pt 4

* serialization

* torchscript

* scripts

* tpu

* review

* model addition timeline

* modular

* more reviews

* reviews

* fix toctree

* reviews reviews

* continue reviews

* more reviews

* modular transformers

* more review

* zamba2

* fix

* all frameworks

* pytorch

* supported model frameworks

* flashattention

* rm check_table

* not-doctested.txt

* rm check_support_list.py

* feedback

* updates/feedback

* review

* feedback

* fix

* update

* feedback

* updates

* update

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2025-03-03 10:33:46 -08:00

3.5 KiB

Wav2Vec2-Conformer

PyTorch

Overview

The Wav2Vec2-Conformer was added to an updated version of fairseq S2T: Fast Speech-to-Text Modeling with fairseq by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.

The official results of the model can be found in Table 3 and Table 4 of the paper.

The Wav2Vec2-Conformer weights were released by the Meta AI team within the Fairseq library.

This model was contributed by patrickvonplaten. The original code can be found here.

Note: Meta (FAIR) released a new version of Wav2Vec2-BERT 2.0 - it's pretrained on 4.5M hours of audio. We especially recommend using it for fine-tuning tasks, e.g. as per this guide.

Usage tips

  • Wav2Vec2-Conformer follows the same architecture as Wav2Vec2, but replaces the Attention-block with a Conformer-block as introduced in Conformer: Convolution-augmented Transformer for Speech Recognition.
  • For the same number of layers, Wav2Vec2-Conformer requires more parameters than Wav2Vec2, but also yields an improved word error rate.
  • Wav2Vec2-Conformer uses the same tokenizer and feature extractor as Wav2Vec2.
  • Wav2Vec2-Conformer can use either no relative position embeddings, Transformer-XL-like position embeddings, or rotary position embeddings by setting the correct config.position_embeddings_type.

Resources

Wav2Vec2ConformerConfig

autodoc Wav2Vec2ConformerConfig

Wav2Vec2Conformer specific outputs

autodoc models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTrainingOutput

Wav2Vec2ConformerModel

autodoc Wav2Vec2ConformerModel - forward

Wav2Vec2ConformerForCTC

autodoc Wav2Vec2ConformerForCTC - forward

Wav2Vec2ConformerForSequenceClassification

autodoc Wav2Vec2ConformerForSequenceClassification - forward

Wav2Vec2ConformerForAudioFrameClassification

autodoc Wav2Vec2ConformerForAudioFrameClassification - forward

Wav2Vec2ConformerForXVector

autodoc Wav2Vec2ConformerForXVector - forward

Wav2Vec2ConformerForPreTraining

autodoc Wav2Vec2ConformerForPreTraining - forward