transformers/tests/tokenization_openai_test.py
2019-04-17 11:58:27 +02:00

80 lines
3.1 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import unittest
import json
import shutil
import pytest
from pytorch_pretrained_bert.tokenization_openai import OpenAIGPTTokenizer, PRETRAINED_VOCAB_ARCHIVE_MAP
class OpenAIGPTTokenizationTest(unittest.TestCase):
def test_full_tokenizer(self):
""" Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n",
"w</w>", "r</w>", "t</w>",
"lo", "low", "er</w>",
"low</w>", "lowest</w>", "newer</w>", "wider</w>"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "l o", "lo w", "e r</w>", ""]
with open("/tmp/openai_tokenizer_vocab_test.json", "w") as fp:
fp.write(json.dumps(vocab_tokens))
vocab_file = fp.name
with open("/tmp/openai_tokenizer_merges_test.txt", "w") as fp:
fp.write("\n".join(merges))
merges_file = fp.name
tokenizer = OpenAIGPTTokenizer(vocab_file, merges_file, special_tokens=["<unk>", "<pad>"])
os.remove(vocab_file)
os.remove(merges_file)
text = "lower"
bpe_tokens = ["low", "er</w>"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + ["<unk>"]
input_bpe_tokens = [14, 15, 20]
self.assertListEqual(
tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
vocab_file, merges_file, special_tokens_file = tokenizer.save_vocabulary(vocab_path="/tmp/")
tokenizer_2 = OpenAIGPTTokenizer.from_pretrained("/tmp/")
os.remove(vocab_file)
os.remove(merges_file)
os.remove(special_tokens_file)
self.assertListEqual(
[tokenizer.encoder, tokenizer.decoder, tokenizer.bpe_ranks,
tokenizer.special_tokens, tokenizer.special_tokens_decoder],
[tokenizer_2.encoder, tokenizer_2.decoder, tokenizer_2.bpe_ranks,
tokenizer_2.special_tokens, tokenizer_2.special_tokens_decoder])
@pytest.mark.slow
def test_tokenizer_from_pretrained(self):
cache_dir = "/tmp/pytorch_pretrained_bert_test/"
for model_name in list(PRETRAINED_VOCAB_ARCHIVE_MAP.keys())[:1]:
tokenizer = OpenAIGPTTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
self.assertIsNotNone(tokenizer)
if __name__ == '__main__':
unittest.main()