# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import os import unittest import json import shutil import pytest from pytorch_pretrained_bert.tokenization_openai import OpenAIGPTTokenizer, PRETRAINED_VOCAB_ARCHIVE_MAP class OpenAIGPTTokenizationTest(unittest.TestCase): def test_full_tokenizer(self): """ Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """ vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w", "r", "t", "lo", "low", "er", "low", "lowest", "newer", "wider"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "l o", "lo w", "e r", ""] with open("/tmp/openai_tokenizer_vocab_test.json", "w") as fp: fp.write(json.dumps(vocab_tokens)) vocab_file = fp.name with open("/tmp/openai_tokenizer_merges_test.txt", "w") as fp: fp.write("\n".join(merges)) merges_file = fp.name tokenizer = OpenAIGPTTokenizer(vocab_file, merges_file, special_tokens=["", ""]) os.remove(vocab_file) os.remove(merges_file) text = "lower" bpe_tokens = ["low", "er"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [""] input_bpe_tokens = [14, 15, 20] self.assertListEqual( tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) vocab_file, merges_file, special_tokens_file = tokenizer.save_vocabulary(vocab_path="/tmp/") tokenizer_2 = OpenAIGPTTokenizer.from_pretrained("/tmp/") os.remove(vocab_file) os.remove(merges_file) os.remove(special_tokens_file) self.assertListEqual( [tokenizer.encoder, tokenizer.decoder, tokenizer.bpe_ranks, tokenizer.special_tokens, tokenizer.special_tokens_decoder], [tokenizer_2.encoder, tokenizer_2.decoder, tokenizer_2.bpe_ranks, tokenizer_2.special_tokens, tokenizer_2.special_tokens_decoder]) @pytest.mark.slow def test_tokenizer_from_pretrained(self): cache_dir = "/tmp/pytorch_pretrained_bert_test/" for model_name in list(PRETRAINED_VOCAB_ARCHIVE_MAP.keys())[:1]: tokenizer = OpenAIGPTTokenizer.from_pretrained(model_name, cache_dir=cache_dir) shutil.rmtree(cache_dir) self.assertIsNotNone(tokenizer) if __name__ == '__main__': unittest.main()