transformers/docs/source/en/model_doc/xlm-roberta.md
Aashish Anand e594e75f1b
Update XLM-RoBERTa model documentation with enhanced usage examples and improved layout (#38596)
* Update XLM-RoBERTa model documentation with enhanced usage examples and improved layout

* Added CLI command example and quantization example for XLM RoBERTa model card.

* Minor change to transformers CLI and quantization example for XLM roberta model card
2025-06-09 12:26:31 -07:00

16 KiB

PyTorch TensorFlow Flax SDPA

XLM-RoBERTa

XLM-RoBERTa is a large multilingual masked language model trained on 2.5TB of filtered CommonCrawl data across 100 languages. It shows that scaling the model provides strong performance gains on high-resource and low-resource languages. The model uses the RoBERTa pretraining objectives on the XLM model.

You can find all the original XLM-RoBERTa checkpoints under the Facebook AI community organization.

Tip

Click on the XLM-RoBERTa models in the right sidebar for more examples of how to apply XLM-RoBERTa to different cross-lingual tasks like classification, translation, and question answering.

The example below demonstrates how to predict the <mask> token with [Pipeline], [AutoModel], and from the command line.

import torch
from transformers import pipeline

pipeline = pipeline(
    task="fill-mask",
    model="FacebookAI/xlm-roberta-base",
    torch_dtype=torch.float16,
    device=0
)
# Example in French
pipeline("Bonjour, je suis un modèle <mask>.")

</hfoption>
<hfoption id="AutoModel">

```python
from transformers import AutoModelForMaskedLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained(
    "FacebookAI/xlm-roberta-base"
)
model = AutoModelForMaskedLM.from_pretrained(
    "FacebookAI/xlm-roberta-base",
    torch_dtype=torch.float16,
    device_map="auto",
    attn_implementation="sdpa"
)

# Prepare input
inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to("cuda")

with torch.no_grad():
    outputs = model(**inputs)
    predictions = outputs.logits

masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)

print(f"The predicted token is: {predicted_token}")
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model FacebookAI/xlm-roberta-base --device 0

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the quantization guide overview for more available quantization backends.

The example below uses bitsandbytes the quantive the weights to 4 bits

import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16
    bnb_4bit_quant_type="nf4",  # or "fp4" for float 4-bit quantization
    bnb_4bit_use_double_quant=True,  # use double quantization for better performance
)
tokenizer = AutoTokenizer.from_pretrained("facebook/xlm-roberta-large")
model = AutoModelForMaskedLM.from_pretrained(
    "facebook/xlm-roberta-large",
    torch_dtype=torch.float16,
    device_map="auto",
    attn_implementation="flash_attention_2",
    quantization_config=quantization_config
)

inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Notes

  • Unlike some XLM models, XLM-RoBERTa doesn't require lang tensors to understand what language is being used. It automatically determines the language from the input IDs

Resources

A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with XLM-RoBERTa. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

Multiple choice

🚀 Deploy

This implementation is the same as RoBERTa. Refer to the documentation of RoBERTa for usage examples as well as the information relative to the inputs and outputs.

XLMRobertaConfig

autodoc XLMRobertaConfig

XLMRobertaTokenizer

autodoc XLMRobertaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary

XLMRobertaTokenizerFast

autodoc XLMRobertaTokenizerFast

XLMRobertaModel

autodoc XLMRobertaModel - forward

XLMRobertaForCausalLM

autodoc XLMRobertaForCausalLM - forward

XLMRobertaForMaskedLM

autodoc XLMRobertaForMaskedLM - forward

XLMRobertaForSequenceClassification

autodoc XLMRobertaForSequenceClassification - forward

XLMRobertaForMultipleChoice

autodoc XLMRobertaForMultipleChoice - forward

XLMRobertaForTokenClassification

autodoc XLMRobertaForTokenClassification - forward

XLMRobertaForQuestionAnswering

autodoc XLMRobertaForQuestionAnswering - forward

TFXLMRobertaModel

autodoc TFXLMRobertaModel - call

TFXLMRobertaForCausalLM

autodoc TFXLMRobertaForCausalLM - call

TFXLMRobertaForMaskedLM

autodoc TFXLMRobertaForMaskedLM - call

TFXLMRobertaForSequenceClassification

autodoc TFXLMRobertaForSequenceClassification - call

TFXLMRobertaForMultipleChoice

autodoc TFXLMRobertaForMultipleChoice - call

TFXLMRobertaForTokenClassification

autodoc TFXLMRobertaForTokenClassification - call

TFXLMRobertaForQuestionAnswering

autodoc TFXLMRobertaForQuestionAnswering - call

FlaxXLMRobertaModel

autodoc FlaxXLMRobertaModel - call

FlaxXLMRobertaForCausalLM

autodoc FlaxXLMRobertaForCausalLM - call

FlaxXLMRobertaForMaskedLM

autodoc FlaxXLMRobertaForMaskedLM - call

FlaxXLMRobertaForSequenceClassification

autodoc FlaxXLMRobertaForSequenceClassification - call

FlaxXLMRobertaForMultipleChoice

autodoc FlaxXLMRobertaForMultipleChoice - call

FlaxXLMRobertaForTokenClassification

autodoc FlaxXLMRobertaForTokenClassification - call

FlaxXLMRobertaForQuestionAnswering

autodoc FlaxXLMRobertaForQuestionAnswering - call