
* Update vit_mae.md * badge float:right * Update docs/source/en/model_doc/vit_mae.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/vit_mae.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/vit_mae.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/vit_mae.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/vit_mae.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/vit_mae.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/vit_mae.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/vit_mae.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/vit_mae.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update model_doc/vit_mae.md * fix --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
3.9 KiB
ViTMAE
ViTMAE is a self-supervised vision model that is pretrained by masking large portions of an image (~75%). An encoder processes the visible image patches and a decoder reconstructs the missing pixels from the encoded patches and mask tokens. After pretraining, the encoder can be reused for downstream tasks like image classification or object detection — often outperforming models trained with supervised learning.
You can find all the original ViTMAE checkpoints under the AI at Meta organization.
Tip
Click on the ViTMAE models in the right sidebar for more examples of how to apply ViTMAE to vision tasks.
The example below demonstrates how to reconstruct the missing pixels with the [ViTMAEForPreTraining
] class.
import torch
import requests
from PIL import Image
from transformers import ViTImageProcessor, ViTMAEForPreTraining
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
processor = ViTImageProcessor.from_pretrained("facebook/vit-mae-base")
inputs = processor(image, return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base", attn_implementation="sdpa").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
reconstruction = outputs.logits
Notes
- ViTMAE is typically used in two stages. Self-supervised pretraining with [
ViTMAEForPreTraining
], and then discarding the decoder and fine-tuning the encoder. After fine-tuning, the weights can be plugged into a model like [ViTForImageClassification
]. - Use [
ViTImageProcessor
] for input preparation.
Resources
- Refer to this notebook to learn how to visualize the reconstructed pixels from [
ViTMAEForPreTraining
].
ViTMAEConfig
autodoc ViTMAEConfig
ViTMAEModel
autodoc ViTMAEModel - forward
ViTMAEForPreTraining
autodoc transformers.ViTMAEForPreTraining - forward
TFViTMAEModel
autodoc TFViTMAEModel - call
TFViTMAEForPreTraining
autodoc transformers.TFViTMAEForPreTraining - call