mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* edit siglip model card * fix syntax * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * address comments --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
186 lines
6.7 KiB
Markdown
186 lines
6.7 KiB
Markdown
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
|
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
</div>
|
|
</div>
|
|
|
|
# SigLIP
|
|
|
|
[SigLIP](https://huggingface.co/papers/2303.15343) is a multimodal image-text model similar to [CLIP](clip). It uses separate image and text encoders to generate representations for both modalities.
|
|
|
|
Unlike CLIP, SigLIP employs a pairwise sigmoid loss on image-text pairs during training. This training loss eliminates the need for a global view of all pairwise similarities between images and texts within a batch. Consequently, it enables more efficient scaling to larger batch sizes while also delivering superior performance with smaller batch sizes.
|
|
|
|
You can find all the original SigLIP checkpoints under the [SigLIP](https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba) collection.
|
|
|
|
|
|
> [!TIP]
|
|
> Click on the SigLIP models in the right sidebar for more examples of how to apply SigLIP to different image and text tasks.
|
|
|
|
The example below demonstrates how to generate similarity scores between texts and image(s) with [`Pipeline`] or the [`AutoModel`] class.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
|
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
|
|
|
|
pipeline = pipeline(task="zero-shot-image-classification", model="google/siglip-base-patch16-224", device=0, torch_dtype=torch.bfloat16)
|
|
pipeline(image, candidate_labels=candidate_labels)
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import torch
|
|
import requests
|
|
from PIL import Image
|
|
from transformers import AutoProcessor, AutoModel
|
|
|
|
model = AutoModel.from_pretrained("google/siglip-base-patch16-224", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
|
|
processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
|
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
|
|
texts = [f'This is a photo of {label}.' for label in candidate_labels]
|
|
inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt").to("cuda")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
logits_per_image = outputs.logits_per_image
|
|
probs = torch.sigmoid(logits_per_image)
|
|
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
|
|
|
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
|
|
|
|
```py
|
|
import torch
|
|
import requests
|
|
from PIL import Image
|
|
from transformers import AutoProcessor, AutoModel, BitsAndBytesConfig
|
|
|
|
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
|
|
model = AutoModel.from_pretrained("google/siglip-base-patch16-224", quantization_config=bnb_config, device_map="auto", attn_implementation="sdpa")
|
|
processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
|
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
|
|
texts = [f'This is a photo of {label}.' for label in candidate_labels]
|
|
inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt").to("cuda")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
logits_per_image = outputs.logits_per_image
|
|
probs = torch.sigmoid(logits_per_image)
|
|
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
|
|
```
|
|
## Notes
|
|
|
|
- Training is supported for DDP and FSDP on single-node multi-GPU setups. However, it does not use [torch.distributed](https://pytorch.org/tutorials/beginner/dist_overview.html) utilities which may limit the scalability of batch size.
|
|
- When using the standalone [`SiglipTokenizer`] or [`SiglipProcessor`], make sure to pass `padding="max_length"` because that is how the model was trained.
|
|
- To get the same results as the [`Pipeline`], a prompt template of `"This is a photo of {label}."` should be passed to the processor.
|
|
- Toggle the `attn_implementation` parameter to either `"sdpa"` or `"flash_attention_2"` to use a more memory-efficient attention.
|
|
```py
|
|
# pip install -U flash-attn --no-build-isolation
|
|
|
|
from transformers import SiglipModel
|
|
|
|
model = SiglipModel.from_pretrained(
|
|
"google/siglip-so400m-patch14-384",
|
|
attn_implementation="flash_attention_2",
|
|
torch_dtype=torch.float16,
|
|
device_map=device,
|
|
)
|
|
```
|
|
|
|
|
|
## SiglipConfig
|
|
|
|
[[autodoc]] SiglipConfig
|
|
- from_text_vision_configs
|
|
|
|
## SiglipTextConfig
|
|
|
|
[[autodoc]] SiglipTextConfig
|
|
|
|
## SiglipVisionConfig
|
|
|
|
[[autodoc]] SiglipVisionConfig
|
|
|
|
## SiglipTokenizer
|
|
|
|
[[autodoc]] SiglipTokenizer
|
|
- build_inputs_with_special_tokens
|
|
- get_special_tokens_mask
|
|
- create_token_type_ids_from_sequences
|
|
- save_vocabulary
|
|
|
|
## SiglipImageProcessor
|
|
|
|
[[autodoc]] SiglipImageProcessor
|
|
- preprocess
|
|
|
|
## SiglipImageProcessorFast
|
|
|
|
[[autodoc]] SiglipImageProcessorFast
|
|
- preprocess
|
|
|
|
## SiglipProcessor
|
|
|
|
[[autodoc]] SiglipProcessor
|
|
|
|
## SiglipModel
|
|
|
|
[[autodoc]] SiglipModel
|
|
- forward
|
|
- get_text_features
|
|
- get_image_features
|
|
|
|
## SiglipTextModel
|
|
|
|
[[autodoc]] SiglipTextModel
|
|
- forward
|
|
|
|
## SiglipVisionModel
|
|
|
|
[[autodoc]] SiglipVisionModel
|
|
- forward
|
|
|
|
|
|
## SiglipForImageClassification
|
|
|
|
[[autodoc]] SiglipForImageClassification
|
|
- forward
|