mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* Update clip.md * Update docs/source/en/model_doc/clip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/clip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/clip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Incorporated suggested changes * Update docs/source/en/model_doc/clip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/clip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/clip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
214 lines
8.5 KiB
Markdown
214 lines
8.5 KiB
Markdown
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
|
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
|
">
|
|
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
|
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
</div>
|
|
</div>
|
|
|
|
# CLIP
|
|
|
|
[CLIP](https://huggingface.co/papers/2103.00020) is a is a multimodal vision and language model motivated by overcoming the fixed number of object categories when training a computer vision model. CLIP learns about images directly from raw text by jointly training on 400M (image, text) pairs. Pretraining on this scale enables zero-shot transfer to downstream tasks. CLIP uses an image encoder and text encoder to get visual features and text features. Both features are projected to a latent space with the same number of dimensions and their dot product gives a similarity score.
|
|
|
|
You can find all the original CLIP checkpoints under the [OpenAI](https://huggingface.co/openai?search_models=clip) organization.
|
|
|
|
> [!TIP]
|
|
> Click on the CLIP models in the right sidebar for more examples of how to apply CLIP to different image and language tasks.
|
|
|
|
The example below demonstrates how to calculate similarity scores between multiple text descriptions and an image with [`Pipeline`] or the [`AutoModel`] class.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
clip = pipeline(
|
|
task="zero-shot-image-classification",
|
|
model="openai/clip-vit-base-patch32",
|
|
torch_dtype=torch.bfloat16,
|
|
device=0
|
|
)
|
|
labels = ["a photo of a cat", "a photo of a dog", "a photo of a car"]
|
|
clip("http://images.cocodataset.org/val2017/000000039769.jpg", candidate_labels=labels)
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import requests
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import AutoProcessor, AutoModel
|
|
|
|
model = AutoModel.from_pretrained("openai/clip-vit-base-patch32", torch_dtype=torch.bfloat16, attn_implementation="sdpa")
|
|
processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
labels = ["a photo of a cat", "a photo of a dog", "a photo of a car"]
|
|
|
|
inputs = processor(text=labels, images=image, return_tensors="pt", padding=True)
|
|
|
|
outputs = model(**inputs)
|
|
logits_per_image = outputs.logits_per_image
|
|
probs = logits_per_image.softmax(dim=1)
|
|
most_likely_idx = probs.argmax(dim=1).item()
|
|
most_likely_label = labels[most_likely_idx]
|
|
print(f"Most likely label: {most_likely_label} with probability: {probs[0][most_likely_idx].item():.3f}")
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
## Notes
|
|
|
|
- Use [`CLIPImageProcessor`] to resize (or rescale) and normalizes images for the model.
|
|
|
|
## CLIPConfig
|
|
|
|
[[autodoc]] CLIPConfig
|
|
- from_text_vision_configs
|
|
|
|
## CLIPTextConfig
|
|
|
|
[[autodoc]] CLIPTextConfig
|
|
|
|
## CLIPVisionConfig
|
|
|
|
[[autodoc]] CLIPVisionConfig
|
|
|
|
## CLIPTokenizer
|
|
|
|
[[autodoc]] CLIPTokenizer
|
|
- build_inputs_with_special_tokens
|
|
- get_special_tokens_mask
|
|
- create_token_type_ids_from_sequences
|
|
- save_vocabulary
|
|
|
|
## CLIPTokenizerFast
|
|
|
|
[[autodoc]] CLIPTokenizerFast
|
|
|
|
## CLIPImageProcessor
|
|
|
|
[[autodoc]] CLIPImageProcessor
|
|
- preprocess
|
|
|
|
## CLIPImageProcessorFast
|
|
|
|
[[autodoc]] CLIPImageProcessorFast
|
|
- preprocess
|
|
|
|
## CLIPFeatureExtractor
|
|
|
|
[[autodoc]] CLIPFeatureExtractor
|
|
|
|
## CLIPProcessor
|
|
|
|
[[autodoc]] CLIPProcessor
|
|
|
|
<frameworkcontent>
|
|
<pt>
|
|
|
|
## CLIPModel
|
|
|
|
[[autodoc]] CLIPModel
|
|
- forward
|
|
- get_text_features
|
|
- get_image_features
|
|
|
|
## CLIPTextModel
|
|
|
|
[[autodoc]] CLIPTextModel
|
|
- forward
|
|
|
|
## CLIPTextModelWithProjection
|
|
|
|
[[autodoc]] CLIPTextModelWithProjection
|
|
- forward
|
|
|
|
## CLIPVisionModelWithProjection
|
|
|
|
[[autodoc]] CLIPVisionModelWithProjection
|
|
- forward
|
|
|
|
## CLIPVisionModel
|
|
|
|
[[autodoc]] CLIPVisionModel
|
|
- forward
|
|
|
|
## CLIPForImageClassification
|
|
|
|
[[autodoc]] CLIPForImageClassification
|
|
- forward
|
|
|
|
</pt>
|
|
<tf>
|
|
|
|
## TFCLIPModel
|
|
|
|
[[autodoc]] TFCLIPModel
|
|
- call
|
|
- get_text_features
|
|
- get_image_features
|
|
|
|
## TFCLIPTextModel
|
|
|
|
[[autodoc]] TFCLIPTextModel
|
|
- call
|
|
|
|
## TFCLIPVisionModel
|
|
|
|
[[autodoc]] TFCLIPVisionModel
|
|
- call
|
|
|
|
</tf>
|
|
<jax>
|
|
|
|
## FlaxCLIPModel
|
|
|
|
[[autodoc]] FlaxCLIPModel
|
|
- __call__
|
|
- get_text_features
|
|
- get_image_features
|
|
|
|
## FlaxCLIPTextModel
|
|
|
|
[[autodoc]] FlaxCLIPTextModel
|
|
- __call__
|
|
|
|
## FlaxCLIPTextModelWithProjection
|
|
|
|
[[autodoc]] FlaxCLIPTextModelWithProjection
|
|
- __call__
|
|
|
|
## FlaxCLIPVisionModel
|
|
|
|
[[autodoc]] FlaxCLIPVisionModel
|
|
- __call__
|
|
|
|
</jax>
|
|
</frameworkcontent>
|