mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* initial design * update all video processors * add tests * need to add qwen2-vl (not tested yet) * add qwen2-vl in auto map * fix copies * isort * resolve confilicts kinda * nit: * qwen2-vl is happy now * qwen2-5 happy * other models are happy * fix copies * fix tests * add docs * CI green now? * add more tests * even more changes + tests * doc builder fail * nit * Update src/transformers/models/auto/processing_auto.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * small update * imports correctly * dump, otherwise this is getting unmanagebale T-T * dump * update * another update * update * tests * move * modular * docs * test * another update * init * remove flakiness in tests * fixup * clean up and remove commented lines * docs * skip this one! * last fix after rebasing * run fixup * delete slow files * remove unnecessary tests + clean up a bit * small fixes * fix tests * more updates * docs * fix tests * update * style * fix qwen2-5-vl * fixup * fixup * unflatten batch when preparing * dump, come back soon * add docs and fix some tests * how to guard this with new dummies? * chat templates in qwen * address some comments * remove `Fast` suffix * fixup * oops should be imported from transforms * typo in requires dummies * new model added with video support * fixup once more * last fixup I hope * revert image processor name + comments * oh, this is why fetch test is failing * fix tests * fix more tests * fixup * add new models: internvl, smolvlm * update docs * imprt once * fix failing tests * do we need to guard it here again, why? * new model was added, update it * remove testcase from tester * fix tests * make style * not related CI fail, lets' just fix here * mark flaky for now, filas 15 out of 100 * style * maybe we can do this way? * don't download images in setup class --------- Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
207 lines
6.1 KiB
Markdown
207 lines
6.1 KiB
Markdown
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||
the License. You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
specific language governing permissions and limitations under the License.
|
||
|
||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||
rendered properly in your Markdown viewer.
|
||
|
||
-->
|
||
|
||
# SmolVLM
|
||
|
||
<div class="flex flex-wrap space-x-1">
|
||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||
</div>
|
||
|
||
## Overview
|
||
SmolVLM2 is an adaptation of the Idefics3 model with two main differences:
|
||
|
||
- It uses SmolLM2 for the text model.
|
||
- It supports multi-image and video inputs
|
||
|
||
## Usage tips
|
||
|
||
Input images are processed either by upsampling (if resizing is enabled) or at their original resolution. The resizing behavior depends on two parameters: do_resize and size.
|
||
|
||
Videos should not be upsampled.
|
||
|
||
If `do_resize` is set to `True`, the model resizes images so that the longest edge is 4*512 pixels by default.
|
||
The default resizing behavior can be customized by passing a dictionary to the `size` parameter. For example, `{"longest_edge": 4 * 512}` is the default, but you can change it to a different value if needed.
|
||
|
||
Here’s how to control resizing and set a custom size:
|
||
```python
|
||
image_processor = SmolVLMImageProcessor(do_resize=True, size={"longest_edge": 2 * 512}, max_image_size=512)
|
||
```
|
||
|
||
Additionally, the `max_image_size` parameter, which controls the size of each square patch the image is decomposed into, is set to 512 by default but can be adjusted as needed. After resizing (if applicable), the image processor decomposes the images into square patches based on the `max_image_size` parameter.
|
||
|
||
This model was contributed by [orrzohar](https://huggingface.co/orrzohar).
|
||
|
||
|
||
|
||
## Usage example
|
||
|
||
### Single Media inference
|
||
|
||
The model can accept both images and videos as input, but you should use only one of the modalities at a time. Here's an example code for that.
|
||
|
||
```python
|
||
import torch
|
||
from transformers import AutoProcessor, AutoModelForImageTextToText
|
||
|
||
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct")
|
||
model = AutoModelForImageTextToText.from_pretrained(
|
||
"HuggingFaceTB/SmolVLM2-256M-Video-Instruct",
|
||
torch_dtype=torch.bfloat16,
|
||
device_map="cuda"
|
||
)
|
||
|
||
conversation = [
|
||
{
|
||
"role": "user",
|
||
"content":[
|
||
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
|
||
{"type": "text", "text": "Describe this image."}
|
||
]
|
||
}
|
||
]
|
||
|
||
inputs = processor.apply_chat_template(
|
||
conversation,
|
||
add_generation_prompt=True,
|
||
tokenize=True,
|
||
return_dict=True,
|
||
return_tensors="pt",
|
||
).to(model.device, dtype=torch.bfloat16)
|
||
|
||
output_ids = model.generate(**inputs, max_new_tokens=128)
|
||
generated_texts = processor.batch_decode(output_ids, skip_special_tokens=True)
|
||
print(generated_texts)
|
||
|
||
|
||
# Video
|
||
conversation = [
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "video", "path": "/path/to/video.mp4"},
|
||
{"type": "text", "text": "Describe this video in detail"}
|
||
]
|
||
},
|
||
]
|
||
|
||
inputs = processor.apply_chat_template(
|
||
conversation,
|
||
add_generation_prompt=True,
|
||
tokenize=True,
|
||
return_dict=True,
|
||
return_tensors="pt",
|
||
).to(model.device, dtype=torch.bfloat16)
|
||
|
||
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=100)
|
||
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
||
print(generated_texts[0])
|
||
```
|
||
|
||
### Batch Mixed Media Inference
|
||
|
||
The model can batch inputs composed of several images/videos and text. Here is an example.
|
||
|
||
```python
|
||
import torch
|
||
from transformers import AutoProcessor, AutoModelForImageTextToText
|
||
|
||
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct")
|
||
model = AutoModelForImageTextToText.from_pretrained(
|
||
"HuggingFaceTB/SmolVLM2-256M-Video-Instruct",
|
||
torch_dtype=torch.bfloat16,
|
||
device_map="cuda"
|
||
)
|
||
|
||
# Conversation for the first image
|
||
conversation1 = [
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "image", "path": "/path/to/image.jpg"},
|
||
{"type": "text", "text": "Describe this image."}
|
||
]
|
||
}
|
||
]
|
||
|
||
# Conversation with two images
|
||
conversation2 = [
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "image", "path": "/path/to/image.jpg"},
|
||
{"type": "image", "path": "/path/to/image.jpg"},
|
||
{"type": "text", "text": "What is written in the pictures?"}
|
||
]
|
||
}
|
||
]
|
||
|
||
# Conversation with pure text
|
||
conversation3 = [
|
||
{"role": "user","content": "who are you?"}
|
||
]
|
||
|
||
|
||
conversations = [conversation1, conversation2, conversation3]
|
||
inputs = processor.apply_chat_template(
|
||
conversation,
|
||
add_generation_prompt=True,
|
||
tokenize=True,
|
||
return_dict=True,
|
||
return_tensors="pt",
|
||
).to(model.device, dtype=torch.bfloat16)
|
||
|
||
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=100)
|
||
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
||
print(generated_texts[0])
|
||
```
|
||
|
||
## SmolVLMConfig
|
||
|
||
[[autodoc]] SmolVLMConfig
|
||
|
||
## SmolVLMVisionConfig
|
||
|
||
[[autodoc]] SmolVLMVisionConfig
|
||
|
||
## Idefics3VisionTransformer
|
||
|
||
[[autodoc]] SmolVLMVisionTransformer
|
||
|
||
## SmolVLMModel
|
||
|
||
[[autodoc]] SmolVLMModel
|
||
- forward
|
||
|
||
## SmolVLMForConditionalGeneration
|
||
|
||
[[autodoc]] SmolVLMForConditionalGeneration
|
||
- forward
|
||
|
||
|
||
## SmolVLMImageProcessor
|
||
[[autodoc]] SmolVLMImageProcessor
|
||
- preprocess
|
||
|
||
## SmolVLMVideoProcessor
|
||
[[autodoc]] SmolVLMVideoProcessor
|
||
- preprocess
|
||
|
||
## SmolVLMProcessor
|
||
[[autodoc]] SmolVLMProcessor
|
||
- __call__
|