mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* model card for Mistral * Update docs/source/en/model_doc/mistral.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/mistral.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/mistral.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/mistral.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/mistral.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * apply suggestions * fix typo * updated with comments * updated with comments * updated with comments * remove hfoption block --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
190 lines
10 KiB
Markdown
190 lines
10 KiB
Markdown
<!--Copyright 2023 Mistral AI and The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
|
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
|
">
|
|
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
|
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
</div>
|
|
</div>
|
|
|
|
# Mistral
|
|
|
|
[Mistral](https://huggingface.co/papers/2310.06825) is a 7B parameter language model, available as a pretrained and instruction-tuned variant, focused on balancing
|
|
the scaling costs of large models with performance and efficient inference. This model uses sliding window attention (SWA) trained with a 8K context length and a fixed cache size to handle longer sequences more effectively. Grouped-query attention (GQA) speeds up inference and reduces memory requirements. Mistral also features a byte-fallback BPE tokenizer to improve token handling and efficiency by ensuring characters are never mapped to out-of-vocabulary tokens.
|
|
|
|
You can find all the original Mistral checkpoints under the [Mistral AI_](https://huggingface.co/mistralai) organization.
|
|
|
|
> [!TIP]
|
|
> Click on the Mistral models in the right sidebar for more examples of how to apply Mistral to different language tasks.
|
|
|
|
The example below demonstrates how to chat with [`Pipeline`] or the [`AutoModel`], and from the command line.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```python
|
|
>>> import torch
|
|
>>> from transformers import pipeline
|
|
|
|
>>> messages = [
|
|
... {"role": "user", "content": "What is your favourite condiment?"},
|
|
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
|
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
|
|
... ]
|
|
|
|
>>> chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3", torch_dtype=torch.bfloat16, device=0)
|
|
>>> chatbot(messages)
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```python
|
|
>>> import torch
|
|
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", torch_dtype=torch.bfloat16, attn_implementation="sdpa", device_map="auto")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
|
|
|
>>> messages = [
|
|
... {"role": "user", "content": "What is your favourite condiment?"},
|
|
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
|
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
|
|
... ]
|
|
|
|
>>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
|
|
|
>>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True)
|
|
>>> tokenizer.batch_decode(generated_ids)[0]
|
|
"Mayonnaise can be made as follows: (...)"
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="transformers-cli">
|
|
|
|
```python
|
|
echo -e "My favorite condiment is" | transformers-cli chat --model_name_or_path mistralai/Mistral-7B-v0.3 --torch_dtype auto --device 0 --attn_implementation flash_attention_2
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
|
|
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
|
|
|
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
|
|
|
|
```python
|
|
>>> import torch
|
|
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
|
|
|
>>> # specify how to quantize the model
|
|
>>> quantization_config = BitsAndBytesConfig(
|
|
... load_in_4bit=True,
|
|
... bnb_4bit_quant_type="nf4",
|
|
... bnb_4bit_compute_dtype="torch.float16",
|
|
... )
|
|
|
|
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", quantization_config=True, torch_dtype=torch.bfloat16, device_map="auto")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
|
|
|
>>> prompt = "My favourite condiment is"
|
|
|
|
>>> messages = [
|
|
... {"role": "user", "content": "What is your favourite condiment?"},
|
|
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
|
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
|
|
... ]
|
|
|
|
>>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
|
|
|
>>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True)
|
|
>>> tokenizer.batch_decode(generated_ids)[0]
|
|
"The expected output"
|
|
```
|
|
|
|
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
|
|
|
```py
|
|
>>> from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
|
|
|
>>> visualizer = AttentionMaskVisualizer("mistralai/Mistral-7B-Instruct-v0.3")
|
|
>>> visualizer("Do you have mayonnaise recipes?")
|
|
```
|
|
|
|
<div class="flex justify-center">
|
|
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/mistral-attn-mask.png"/>
|
|
</div>
|
|
|
|
## MistralConfig
|
|
|
|
[[autodoc]] MistralConfig
|
|
|
|
## MistralModel
|
|
|
|
[[autodoc]] MistralModel
|
|
- forward
|
|
|
|
## MistralForCausalLM
|
|
|
|
[[autodoc]] MistralForCausalLM
|
|
- forward
|
|
|
|
## MistralForSequenceClassification
|
|
|
|
[[autodoc]] MistralForSequenceClassification
|
|
- forward
|
|
|
|
## MistralForTokenClassification
|
|
|
|
[[autodoc]] MistralForTokenClassification
|
|
- forward
|
|
|
|
## MistralForQuestionAnswering
|
|
|
|
[[autodoc]] MistralForQuestionAnswering
|
|
- forward
|
|
|
|
## FlaxMistralModel
|
|
|
|
[[autodoc]] FlaxMistralModel
|
|
- __call__
|
|
|
|
## FlaxMistralForCausalLM
|
|
|
|
[[autodoc]] FlaxMistralForCausalLM
|
|
- __call__
|
|
|
|
## TFMistralModel
|
|
|
|
[[autodoc]] TFMistralModel
|
|
- call
|
|
|
|
## TFMistralForCausalLM
|
|
|
|
[[autodoc]] TFMistralForCausalLM
|
|
- call
|
|
|
|
## TFMistralForSequenceClassification
|
|
|
|
[[autodoc]] TFMistralForSequenceClassification
|
|
- call
|