mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-12 17:20:03 +06:00

* [Mistral] Mistral-7B-v0.1 support * fixing names * slightly longer test * fixups * not_doctested * wrongly formatted references * make fixuped --------- Co-authored-by: Timothee Lacroix <t@eugen.ai> Co-authored-by: timlacroix <t@mistral.ai>
106 lines
4.1 KiB
Markdown
106 lines
4.1 KiB
Markdown
<!--Copyright 2023 Mistral AI and The HuggingFace Team. All rights reserved.
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||
the License. You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
specific language governing permissions and limitations under the License.
|
||
|
||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||
rendered properly in your Markdown viewer.
|
||
|
||
-->
|
||
|
||
# Mistral
|
||
|
||
## Overview
|
||
|
||
Mistral-7B-v0.1 is Mistral AI’s first Large Language Model (LLM).
|
||
|
||
## Model Details
|
||
|
||
Mistral-7B-v0.1 is a decoder-based LM with the following architectural choices:
|
||
* Sliding Window Attention - Trained with 8k context length and fixed cache size, with a theoretical attention span of 128K tokens
|
||
* GQA (Grouped Query Attention) - allowing faster inference and lower cache size.
|
||
* Byte-fallback BPE tokenizer - ensures that characters are never mapped to out of vocabulary tokens.
|
||
|
||
We also provide an instruction fine-tuned model: `Mistral-7B-Instruct-v0.1` which can be used for chat-based inference.
|
||
|
||
For more details please read our [release blog post](https://mistral.ai/news/announcing-mistral-7b-v0.1/)
|
||
|
||
## License
|
||
|
||
Both `Mistral-7B-v0.1` and `Mistral-7B-Instruct-v0.1` are released under the Apache 2.0 license.
|
||
|
||
## Usage
|
||
|
||
`Mistral-7B-v0.1` and `Mistral-7B-Instruct-v0.1` can be found on the [Huggingface Hub](https://huggingface.co/mistralai)
|
||
|
||
These ready-to-use checkpoints can be downloaded and used via the HuggingFace Hub:
|
||
|
||
```python
|
||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
>>> device = "cuda" # the device to load the model onto
|
||
|
||
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
|
||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
||
|
||
>>> prompt = "My favourite condiment is"
|
||
|
||
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
|
||
>>> model.to(device)
|
||
|
||
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
||
>>> tokenizer.batch_decode(generated_ids)[0]
|
||
"The expected outupt"
|
||
```
|
||
|
||
Raw weights for `Mistral-7B-v0.1` and `Mistral-7B-Instruct-v0.1` can be downloaded from:
|
||
|
||
| Model Name | Checkpoint |
|
||
|----------------------------|-----------------------------------------------------------------------------------------|
|
||
| `Mistral-7B-v0.1` | [Raw Checkpoint](https://files.mistral-7b-v0-1.mistral.ai/mistral-7B-v0.1.tar) |
|
||
| `Mistral-7B-Instruct-v0.1` | [Raw Checkpoint](https://files.mistral-7b-v0-1.mistral.ai/mistral-7B-instruct-v0.1.tar) |
|
||
|
||
|
||
To use these raw checkpoints with HuggingFace you can use the `convert_mistral_weights_to_hf.py` script to convert them to the HuggingFace format:
|
||
|
||
```bash
|
||
python src/transformers/models/mistral/convert_mistral_weights_to_hf.py \
|
||
--input_dir /path/to/downloaded/mistral/weights --model_size 7B --output_dir /output/path
|
||
```
|
||
|
||
You can then load the converted model from the `output/path`:
|
||
|
||
```python
|
||
from transformers import MistralForCausalLM, LlamaTokenzier
|
||
|
||
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
|
||
model = MistralForCausalLM.from_pretrained("/output/path")
|
||
```
|
||
|
||
## The Mistral Team
|
||
|
||
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
|
||
|
||
## MistralConfig
|
||
|
||
[[autodoc]] MistralConfig
|
||
|
||
## MistralModel
|
||
|
||
[[autodoc]] MistralModel
|
||
- forward
|
||
|
||
## MistralForCausalLM
|
||
|
||
[[autodoc]] MistralForCausalLM
|
||
- forward
|
||
|
||
## MistralForSequenceClassification
|
||
|
||
[[autodoc]] MistralForSequenceClassification
|
||
- forward |