transformers/docs/source/en/index.md
Yoach Lacombe 9ba021ea75
Moshi integration (#33624)
* clean mimi commit

* some nits suggestions from Arthur

* make fixup

* first moshi WIP

* converting weights working + configuration + generation configuration

* finalize converting script - still missing tokenizer and FE and processor

* fix saving model w/o default config

* working generation

* use GenerationMixin instead of inheriting

* add delay pattern mask

* fix right order: moshi codes then user codes

* unconditional inputs + generation config

* get rid of MoshiGenerationConfig

* blank user inputs

* update convert script:fix conversion, add  tokenizer, feature extractor and bf16

* add and correct Auto classes

* update modeling code, configuration and tests

* make fixup

* fix some copies

* WIP: add integration tests

* add dummy objects

* propose better readiblity and code organisation

* update tokenization tests

* update docstrigns, eval and modeling

* add .md

* make fixup

* add MoshiForConditionalGeneration to ignore Auto

* revert mimi changes

* re

* further fix

* Update moshi.md

* correct md formating

* move prepare causal mask to class

* fix copies

* fix depth decoder causal

* fix and correct some tests

* make style and update .md

* correct config checkpoitn

* Update tests/models/moshi/test_tokenization_moshi.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/moshi/test_tokenization_moshi.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* make style

* Update src/transformers/models/moshi/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

* change firm in copyrights

* udpate config with nested dict

* replace einsum

* make style

* change split to True

* add back splt=False

* remove tests in convert

* Update tests/models/moshi/test_modeling_moshi.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add default config repo + add model to FA2 docstrings

* remove logits float

* fix some tokenization tests and ignore some others

* make style tokenization tests

* update modeling with sliding window + update modeling tests

* [run-slow] moshi

* remove prepare for generation frol CausalLM

* isort

* remove copied from

* ignore offload tests

* update causal mask and prepare 4D mask aligned with recent changes

* further test refine + add back prepare_inputs_for_generation for depth decoder

* correct conditional use of prepare mask

* update slow integration tests

* fix multi-device forward

* remove previous solution to device_map

* save_load is flaky

* fix generate multi-devices

* fix device

* move tensor to int

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Marc Sun <marc@huggingface.co>
2024-10-16 11:21:49 +02:00

44 KiB

🤗 Transformers

State-of-the-art Machine Learning for PyTorch, TensorFlow, and JAX.

🤗 Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities, such as:

📝 Natural Language Processing: text classification, named entity recognition, question answering, language modeling, summarization, translation, multiple choice, and text generation.
🖼️ Computer Vision: image classification, object detection, and segmentation.
🗣️ Audio: automatic speech recognition and audio classification.
🐙 Multimodal: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.

🤗 Transformers support framework interoperability between PyTorch, TensorFlow, and JAX. This provides the flexibility to use a different framework at each stage of a model's life; train a model in three lines of code in one framework, and load it for inference in another. Models can also be exported to a format like ONNX and TorchScript for deployment in production environments.

Join the growing community on the Hub, forum, or Discord today!

If you are looking for custom support from the Hugging Face team

HuggingFace Expert Acceleration Program

Contents

The documentation is organized into five sections:

  • GET STARTED provides a quick tour of the library and installation instructions to get up and running.

  • TUTORIALS are a great place to start if you're a beginner. This section will help you gain the basic skills you need to start using the library.

  • HOW-TO GUIDES show you how to achieve a specific goal, like finetuning a pretrained model for language modeling or how to write and share a custom model.

  • CONCEPTUAL GUIDES offers more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.

  • API describes all classes and functions:

    • MAIN CLASSES details the most important classes like configuration, model, tokenizer, and pipeline.
    • MODELS details the classes and functions related to each model implemented in the library.
    • INTERNAL HELPERS details utility classes and functions used internally.

Supported models and frameworks

The table below represents the current support in the library for each of those models, whether they have a Python tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in Jax (via Flax), PyTorch, and/or TensorFlow.

Model PyTorch support TensorFlow support Flax Support
ALBERT
ALIGN
AltCLIP
Audio Spectrogram Transformer
Autoformer
Bark
BART
BARThez
BARTpho
BEiT
BERT
Bert Generation
BertJapanese
BERTweet
BigBird
BigBird-Pegasus
BioGpt
BiT
Blenderbot
BlenderbotSmall
BLIP
BLIP-2
BLOOM
BORT
BridgeTower
BROS
ByT5
CamemBERT
CANINE
Chameleon
Chinese-CLIP
CLAP
CLIP
CLIPSeg
CLVP
CodeGen
CodeLlama
Cohere
Conditional DETR
ConvBERT
ConvNeXT
ConvNeXTV2
CPM
CPM-Ant
CTRL
CvT
DAC
Data2VecAudio
Data2VecText
Data2VecVision
DBRX
DeBERTa
DeBERTa-v2
Decision Transformer
Deformable DETR
DeiT
DePlot
Depth Anything
DETA
DETR
DialoGPT
DiNAT
DINOv2
DistilBERT
DiT
DonutSwin
DPR
DPT
EfficientFormer
EfficientNet
ELECTRA
EnCodec
Encoder decoder
ERNIE
ErnieM
ESM
FairSeq Machine-Translation
Falcon
FalconMamba
FastSpeech2Conformer
FLAN-T5
FLAN-UL2
FlauBERT
FLAVA
FNet
FocalNet
Funnel Transformer
Fuyu
Gemma
Gemma2
GIT
GLPN
GPT Neo
GPT NeoX
GPT NeoX Japanese
GPT-J
GPT-Sw3
GPTBigCode
GPTSAN-japanese
Granite
GraniteMoeMoe
Graphormer
Grounding DINO
GroupViT
HerBERT
Hiera
Hubert
I-BERT
IDEFICS
Idefics2
Idefics3
ImageGPT
Informer
InstructBLIP
InstructBlipVideo
Jamba
JetMoe
Jukebox
KOSMOS-2
LayoutLM
LayoutLMv2
LayoutLMv3
LayoutXLM
LED
LeViT
LiLT
LLaMA
Llama2
Llama3
LLaVa
LLaVA-NeXT
LLaVa-NeXT-Video
LLaVA-Onevision
Longformer
LongT5
LUKE
LXMERT
M-CTC-T
M2M100
MADLAD-400
Mamba
mamba2
Marian
MarkupLM
Mask2Former
MaskFormer
MatCha
mBART
mBART-50
MEGA
Megatron-BERT
Megatron-GPT2
MGP-STR
Mimi
Mistral
Mixtral
Mllama
mLUKE
MMS
MobileBERT
MobileNetV1
MobileNetV2
MobileViT
MobileViTV2
Moshi
MPNet
MPT
MRA
MT5
MusicGen
MusicGen Melody
MVP
NAT
Nemotron
Nezha
NLLB
NLLB-MOE
Nougat
Nyströmformer
OLMo
OLMoE
OmDet-Turbo
OneFormer
OpenAI GPT
OpenAI GPT-2
OpenLlama
OPT
OWL-ViT
OWLv2
PaliGemma
PatchTSMixer
PatchTST
Pegasus
PEGASUS-X
Perceiver
Persimmon
Phi
Phi3
Phimoe
PhoBERT
Pix2Struct
Pixtral
PLBart
PoolFormer
Pop2Piano
ProphetNet
PVT
PVTv2
QDQBert
Qwen2
Qwen2Audio
Qwen2MoE
Qwen2VL
RAG
REALM
RecurrentGemma
Reformer
RegNet
RemBERT
ResNet
RetriBERT
RoBERTa
RoBERTa-PreLayerNorm
RoCBert
RoFormer
RT-DETR
RT-DETR-ResNet
RWKV
SAM
SeamlessM4T
SeamlessM4Tv2
SegFormer
SegGPT
SEW
SEW-D
SigLIP
Speech Encoder decoder
Speech2Text
SpeechT5
Splinter
SqueezeBERT
StableLm
Starcoder2
SuperPoint
SwiftFormer
Swin Transformer
Swin Transformer V2
Swin2SR
SwitchTransformers
T5
T5v1.1
Table Transformer
TAPAS
TAPEX
Time Series Transformer
TimeSformer
Trajectory Transformer
Transformer-XL
TrOCR
TVLT
TVP
UDOP
UL2
UMT5
UniSpeech
UniSpeechSat
UnivNet
UPerNet
VAN
VideoLlava
VideoMAE
ViLT
VipLlava
Vision Encoder decoder
VisionTextDualEncoder
VisualBERT
ViT
ViT Hybrid
VitDet
ViTMAE
ViTMatte
ViTMSN
VITS
ViViT
Wav2Vec2
Wav2Vec2-BERT
Wav2Vec2-Conformer
Wav2Vec2Phoneme
WavLM
Whisper
X-CLIP
X-MOD
XGLM
XLM
XLM-ProphetNet
XLM-RoBERTa
XLM-RoBERTa-XL
XLM-V
XLNet
XLS-R
XLSR-Wav2Vec2
YOLOS
YOSO
Zamba
ZoeDepth