mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
767 lines
36 KiB
Python
767 lines
36 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch OpenAI GPT-2 model."""
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import collections
|
|
import copy
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import sys
|
|
from io import open
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import CrossEntropyLoss
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from .file_utils import cached_path
|
|
from .model_utils import Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel, prune_conv1d_layer
|
|
from .modeling import BertLayerNorm as LayerNorm
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
|
|
"gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin"}
|
|
PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json",
|
|
"gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json"}
|
|
|
|
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
|
""" Load tf checkpoints in a pytorch model
|
|
"""
|
|
try:
|
|
import re
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
except ImportError:
|
|
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
|
|
"https://www.tensorflow.org/install/ for installation instructions.")
|
|
raise
|
|
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
|
print("Converting TensorFlow checkpoint from {}".format(tf_path))
|
|
# Load weights from TF model
|
|
init_vars = tf.train.list_variables(tf_path)
|
|
names = []
|
|
arrays = []
|
|
for name, shape in init_vars:
|
|
print("Loading TF weight {} with shape {}".format(name, shape))
|
|
array = tf.train.load_variable(tf_path, name)
|
|
names.append(name)
|
|
arrays.append(array.squeeze())
|
|
|
|
for name, array in zip(names, arrays):
|
|
name = name[6:] # skip "model/"
|
|
name = name.split('/')
|
|
pointer = model
|
|
for m_name in name:
|
|
if re.fullmatch(r'[A-Za-z]+\d+', m_name):
|
|
l = re.split(r'(\d+)', m_name)
|
|
else:
|
|
l = [m_name]
|
|
if l[0] == 'w' or l[0] == 'g':
|
|
pointer = getattr(pointer, 'weight')
|
|
elif l[0] == 'b':
|
|
pointer = getattr(pointer, 'bias')
|
|
elif l[0] == 'wpe' or l[0] == 'wte':
|
|
pointer = getattr(pointer, l[0])
|
|
pointer = getattr(pointer, 'weight')
|
|
else:
|
|
pointer = getattr(pointer, l[0])
|
|
if len(l) >= 2:
|
|
num = int(l[1])
|
|
pointer = pointer[num]
|
|
try:
|
|
assert pointer.shape == array.shape
|
|
except AssertionError as e:
|
|
e.args += (pointer.shape, array.shape)
|
|
raise
|
|
print("Initialize PyTorch weight {}".format(name))
|
|
pointer.data = torch.from_numpy(array)
|
|
return model
|
|
|
|
|
|
def gelu(x):
|
|
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
|
|
|
|
|
class GPT2Config(PretrainedConfig):
|
|
"""Configuration class to store the configuration of a `GPT2Model`.
|
|
"""
|
|
pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size_or_config_json_file=50257,
|
|
n_special=0,
|
|
n_positions=1024,
|
|
n_ctx=1024,
|
|
n_embd=768,
|
|
n_layer=12,
|
|
n_head=12,
|
|
resid_pdrop=0.1,
|
|
embd_pdrop=0.1,
|
|
attn_pdrop=0.1,
|
|
layer_norm_epsilon=1e-5,
|
|
initializer_range=0.02,
|
|
predict_special_tokens=True,
|
|
**kwargs
|
|
):
|
|
"""Constructs GPT2Config.
|
|
|
|
Args:
|
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
|
|
n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
|
|
n_positions: Number of positional embeddings.
|
|
n_ctx: Size of the causal mask (usually same as n_positions).
|
|
n_embd: Dimensionality of the embeddings and hidden states.
|
|
n_layer: Number of hidden layers in the Transformer encoder.
|
|
n_head: Number of attention heads for each attention layer in
|
|
the Transformer encoder.
|
|
layer_norm_epsilon: epsilon to use in the layer norm layers
|
|
resid_pdrop: The dropout probabilitiy for all fully connected
|
|
layers in the embeddings, encoder, and pooler.
|
|
attn_pdrop: The dropout ratio for the attention
|
|
probabilities.
|
|
embd_pdrop: The dropout ratio for the embeddings.
|
|
initializer_range: The sttdev of the truncated_normal_initializer for
|
|
initializing all weight matrices.
|
|
predict_special_tokens: should we predict special tokens (when the model has a LM head)
|
|
"""
|
|
super(GPT2Config, self).__init__(**kwargs)
|
|
|
|
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
|
|
and isinstance(vocab_size_or_config_json_file, unicode)):
|
|
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
|
|
json_config = json.loads(reader.read())
|
|
for key, value in json_config.items():
|
|
self.__dict__[key] = value
|
|
elif isinstance(vocab_size_or_config_json_file, int):
|
|
self.vocab_size = vocab_size_or_config_json_file
|
|
self.n_special = n_special
|
|
self.n_ctx = n_ctx
|
|
self.n_positions = n_positions
|
|
self.n_embd = n_embd
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
self.resid_pdrop = resid_pdrop
|
|
self.embd_pdrop = embd_pdrop
|
|
self.attn_pdrop = attn_pdrop
|
|
self.layer_norm_epsilon = layer_norm_epsilon
|
|
self.initializer_range = initializer_range
|
|
self.predict_special_tokens = predict_special_tokens
|
|
else:
|
|
raise ValueError(
|
|
"First argument must be either a vocabulary size (int)"
|
|
"or the path to a pretrained model config file (str)"
|
|
)
|
|
|
|
@property
|
|
def total_tokens_embeddings(self):
|
|
return self.vocab_size + self.n_special
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.n_embd
|
|
|
|
@property
|
|
def num_attention_heads(self):
|
|
return self.n_head
|
|
|
|
@property
|
|
def num_hidden_layers(self):
|
|
return self.n_layer
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, nx, n_ctx, config, scale=False):
|
|
super(Attention, self).__init__()
|
|
self.output_attentions = config.output_attentions
|
|
|
|
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
|
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
|
assert n_state % config.n_head == 0
|
|
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
|
|
self.n_head = config.n_head
|
|
self.split_size = n_state
|
|
self.scale = scale
|
|
|
|
self.c_attn = Conv1D(n_state * 3, nx)
|
|
self.c_proj = Conv1D(n_state, nx)
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
|
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
|
|
|
def prune_heads(self, heads):
|
|
if len(heads) == 0:
|
|
return
|
|
mask = torch.ones(self.n_head, self.split_size // self.n_head)
|
|
for head in heads:
|
|
mask[head] = 0
|
|
mask = mask.view(-1).contiguous().eq(1)
|
|
index = torch.arange(len(mask))[mask].long()
|
|
index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
|
|
# Prune conv1d layers
|
|
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
|
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
|
# Update hyper params
|
|
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
|
|
self.n_head = self.n_head - len(heads)
|
|
|
|
def _attn(self, q, k, v, head_mask=None):
|
|
w = torch.matmul(q, k)
|
|
if self.scale:
|
|
w = w / math.sqrt(v.size(-1))
|
|
nd, ns = w.size(-2), w.size(-1)
|
|
b = self.bias[:, :, ns-nd:ns, :ns]
|
|
w = w * b - 1e4 * (1 - b)
|
|
|
|
w = nn.Softmax(dim=-1)(w)
|
|
w = self.attn_dropout(w)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
w = w * head_mask
|
|
|
|
outputs = [torch.matmul(w, v)]
|
|
if self.output_attentions:
|
|
outputs.append(w)
|
|
return outputs
|
|
|
|
def merge_heads(self, x):
|
|
x = x.permute(0, 2, 1, 3).contiguous()
|
|
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
|
|
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
|
|
|
|
def split_heads(self, x, k=False):
|
|
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
|
|
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
|
|
if k:
|
|
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length)
|
|
else:
|
|
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
|
|
|
def forward(self, x, layer_past=None, head_mask=None):
|
|
x = self.c_attn(x)
|
|
query, key, value = x.split(self.split_size, dim=2)
|
|
query = self.split_heads(query)
|
|
key = self.split_heads(key, k=True)
|
|
value = self.split_heads(value)
|
|
if layer_past is not None:
|
|
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below
|
|
key = torch.cat((past_key, key), dim=-1)
|
|
value = torch.cat((past_value, value), dim=-2)
|
|
present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking
|
|
|
|
attn_outputs = self._attn(query, key, value, head_mask)
|
|
a = attn_outputs[0]
|
|
|
|
a = self.merge_heads(a)
|
|
a = self.c_proj(a)
|
|
a = self.resid_dropout(a)
|
|
|
|
outputs = [a, present] + attn_outputs[1:]
|
|
return outputs # a, present, (attentions)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
|
|
super(MLP, self).__init__()
|
|
nx = config.n_embd
|
|
self.c_fc = Conv1D(n_state, nx)
|
|
self.c_proj = Conv1D(nx, n_state)
|
|
self.act = gelu
|
|
self.dropout = nn.Dropout(config.resid_pdrop)
|
|
|
|
def forward(self, x):
|
|
h = self.act(self.c_fc(x))
|
|
h2 = self.c_proj(h)
|
|
return self.dropout(h2)
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, n_ctx, config, scale=False):
|
|
super(Block, self).__init__()
|
|
nx = config.n_embd
|
|
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
|
|
self.attn = Attention(nx, n_ctx, config, scale)
|
|
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
|
|
self.mlp = MLP(4 * nx, config)
|
|
|
|
def forward(self, x, layer_past=None, head_mask=None):
|
|
output_attn = self.attn(self.ln_1(x), layer_past=layer_past, head_mask=head_mask)
|
|
a = output_attn[0] # output_attn: a, present, (attentions)
|
|
|
|
x = x + a
|
|
m = self.mlp(self.ln_2(x))
|
|
x = x + m
|
|
|
|
outputs = [x] + output_attn[1:]
|
|
return outputs # x, present, (attentions)
|
|
|
|
|
|
class GPT2LMHead(nn.Module):
|
|
""" Language Model Head for the transformer """
|
|
|
|
def __init__(self, model_embeddings_weights, config):
|
|
super(GPT2LMHead, self).__init__()
|
|
self.n_embd = config.n_embd
|
|
self.vocab_size = config.vocab_size
|
|
self.predict_special_tokens = config.predict_special_tokens
|
|
embed_shape = model_embeddings_weights.shape
|
|
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
|
|
self.set_embeddings_weights(model_embeddings_weights)
|
|
|
|
def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
|
|
self.predict_special_tokens = predict_special_tokens
|
|
self.decoder.weight = model_embeddings_weights # Tied weights
|
|
|
|
def forward(self, hidden_state):
|
|
lm_logits = self.decoder(hidden_state)
|
|
if not self.predict_special_tokens:
|
|
lm_logits = lm_logits[..., :self.vocab_size]
|
|
return lm_logits
|
|
|
|
|
|
class GPT2MultipleChoiceHead(nn.Module):
|
|
""" Classifier Head for the transformer """
|
|
|
|
def __init__(self, config):
|
|
super(GPT2MultipleChoiceHead, self).__init__()
|
|
self.n_embd = config.n_embd
|
|
self.dropout = nn.Dropout2d(config.resid_pdrop) # To reproduce the noise_shape parameter of TF implementation
|
|
self.linear = nn.Linear(config.n_embd, 1)
|
|
|
|
nn.init.normal_(self.linear.weight, std=0.02)
|
|
nn.init.normal_(self.linear.bias, 0)
|
|
|
|
def forward(self, hidden_states, mc_token_ids=None):
|
|
""" Extract classification token hidden state and project it using self.linear
|
|
hidden_state: shape (bsz, num_choices, seq_length, hidden_size)
|
|
mc_token_ids: [optional] index of the classification token, shape (bsz, num_choices)
|
|
if mc_token_ids=None we take the last token of the sequence as classification token
|
|
"""
|
|
if mc_token_ids is None:
|
|
mc_token_ids = torch.full_like(hidden_states[:, :, :1, :], hidden_states.shape[2] - 1, dtype=torch.long)
|
|
else:
|
|
mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
|
|
# mc_token_ids has shape (bsz, num_choices, 1, hidden_size)
|
|
multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
|
|
# (bsz, num_choices, hidden_size)
|
|
multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
|
|
multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
|
|
# (bsz, num_choices)
|
|
return multiple_choice_logits
|
|
|
|
|
|
class GPT2PreTrainedModel(PreTrainedModel):
|
|
""" An abstract class to handle weights initialization and
|
|
a simple interface for dowloading and loading pretrained models.
|
|
"""
|
|
config_class = GPT2Config
|
|
pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
|
|
load_tf_weights = load_tf_weights_in_gpt2
|
|
base_model_prefix = "transformer"
|
|
|
|
def init_weights(self, module):
|
|
""" Initialize the weights.
|
|
"""
|
|
if isinstance(module, (nn.Linear, nn.Embedding)):
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
elif isinstance(module, LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
|
module.bias.data.zero_()
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
|
|
"""
|
|
Instantiate a GPT2PreTrainedModel from a pre-trained model file or a pytorch state dict.
|
|
Download and cache the pre-trained model file if needed.
|
|
|
|
Params:
|
|
pretrained_model_name_or_path: either:
|
|
- a str with the name of a pre-trained model to load selected in the list of:
|
|
. `gpt2`
|
|
- a path or url to a pretrained model archive containing:
|
|
. `gpt2_config.json` a configuration file for the model
|
|
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
|
|
- a path or url to a pretrained model archive containing:
|
|
. `gpt2_config.json` a configuration file for the model
|
|
. a TensorFlow checkpoint with trained weights
|
|
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
|
|
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
|
|
state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
|
|
*inputs, **kwargs: additional input for the specific GPT2 class
|
|
"""
|
|
num_special_tokens = kwargs.pop('num_special_tokens', None)
|
|
|
|
model = PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
|
|
|
|
# Add additional embeddings for special tokens if needed
|
|
# This step also make sure we are still sharing the output and input embeddings after loading weights
|
|
model.set_num_special_tokens(num_special_tokens)
|
|
return model
|
|
|
|
|
|
class GPT2Model(GPT2PreTrainedModel):
|
|
"""OpenAI GPT-2 model ("Language Models are Unsupervised Multitask Learners").
|
|
|
|
GPT-2 use a single embedding matrix to store the word and special embeddings.
|
|
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
|
|
Special tokens need to be trained during the fine-tuning if you use them.
|
|
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
|
|
|
|
The embeddings are ordered as follow in the token embeddings matrice:
|
|
[0, ----------------------
|
|
... -> word embeddings
|
|
config.vocab_size - 1, ______________________
|
|
config.vocab_size,
|
|
... -> special embeddings
|
|
config.vocab_size + config.n_special - 1] ______________________
|
|
|
|
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
|
|
total_tokens_embeddings = config.vocab_size + config.n_special
|
|
You should use the associate indices to index the embeddings.
|
|
|
|
Params:
|
|
`config`: a GPT2Config class instance with the configuration to build a new model
|
|
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
|
|
|
Inputs:
|
|
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
|
|
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
|
|
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
|
|
with the position indices (selected in the range [0, config.n_positions - 1[.
|
|
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
|
|
You can use it to add a third type of embedding to each input token in the sequence
|
|
(the previous two being the word and position embeddings).
|
|
The input, position and token_type embeddings are summed inside the Transformer before the first
|
|
self-attention block.
|
|
`past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
|
|
(key and values in the attention blocks) to speed up sequential decoding
|
|
(this is the presents output of the model, cf. below).
|
|
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
|
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
|
|
|
Outputs a tuple consisting of:
|
|
`hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings)
|
|
as torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
|
|
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
|
|
`presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
|
|
torch.FloatTensors. They can be reused to speed up sequential decoding.
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into BPE token ids
|
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
|
|
|
config = modeling_gpt2.GPT2Config()
|
|
|
|
model = modeling_gpt2.GPT2Model(config)
|
|
hidden_states, presents = model(input_ids)
|
|
```
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super(GPT2Model, self).__init__(config)
|
|
self.output_hidden_states = config.output_hidden_states
|
|
self.output_attentions = config.output_attentions
|
|
|
|
self.wte = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
|
|
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
|
|
self.drop = nn.Dropout(config.embd_pdrop)
|
|
block = Block(config.n_ctx, config, scale=True)
|
|
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
|
|
self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
|
|
|
self.apply(self.init_weights)
|
|
|
|
def set_num_special_tokens(self, num_special_tokens=None):
|
|
" Update input embeddings with new embedding matrice if needed "
|
|
if num_special_tokens is None or self.config.n_special == num_special_tokens:
|
|
return
|
|
# Update config
|
|
self.config.n_special = num_special_tokens
|
|
# Build new embeddings and initialize all new embeddings (in particular the special tokens)
|
|
old_embed = self.wte
|
|
self.wte = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
|
|
self.wte.to(old_embed.weight.device)
|
|
self.init_weights(self.wte)
|
|
# Copy word embeddings from the previous weights
|
|
self.wte.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
""" Prunes heads of the model.
|
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.h[layer].attn.prune_heads(heads)
|
|
|
|
def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None):
|
|
if past is None:
|
|
past_length = 0
|
|
past = [None] * len(self.h)
|
|
else:
|
|
past_length = past[0][0].size(-2)
|
|
if position_ids is None:
|
|
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
|
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# head_mask has shape n_layer x batch x n_heads x N x N
|
|
if head_mask is not None:
|
|
if head_mask.dim() == 1:
|
|
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
|
head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
|
|
elif head_mask.dim() == 2:
|
|
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
|
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
|
|
else:
|
|
head_mask = [None] * self.config.n_layer
|
|
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_ids.size(-1))
|
|
position_ids = position_ids.view(-1, position_ids.size(-1))
|
|
|
|
inputs_embeds = self.wte(input_ids)
|
|
position_embeds = self.wpe(position_ids)
|
|
if token_type_ids is not None:
|
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
|
|
token_type_embeds = self.wte(token_type_ids)
|
|
else:
|
|
token_type_embeds = 0
|
|
hidden_states = inputs_embeds + position_embeds + token_type_embeds
|
|
hidden_states = self.drop(hidden_states)
|
|
|
|
output_shape = input_shape + (hidden_states.size(-1),)
|
|
|
|
presents = []
|
|
all_attentions = []
|
|
all_hidden_states = []
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past)):
|
|
if self.output_hidden_states:
|
|
all_hidden_states.append(hidden_states.view(*output_shape))
|
|
|
|
outputs = block(hidden_states, layer_past, head_mask[i])
|
|
hidden_states, present = outputs[:2]
|
|
presents.append(present)
|
|
|
|
if self.output_attentions:
|
|
all_attentions.append(outputs[2])
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
hidden_states = hidden_states.view(*output_shape)
|
|
# Add last hidden state
|
|
if self.output_hidden_states:
|
|
all_hidden_states.append(hidden_states)
|
|
|
|
outputs = [hidden_states, presents]
|
|
if self.output_hidden_states:
|
|
outputs.append(all_hidden_states)
|
|
if self.output_attentions:
|
|
# let the number of heads free (-1) so we can extract attention even after head pruning
|
|
attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
|
|
all_attentions = list(t.view(*attention_output_shape) for t in all_attentions)
|
|
outputs.append(all_attentions)
|
|
return outputs # last hidden state, presents, (all hidden_states), (attentions)
|
|
|
|
|
|
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
"""OpenAI GPT-2 model with a Language Modeling head ("Language Models are Unsupervised Multitask Learners").
|
|
|
|
Params:
|
|
`config`: a GPT2Config class instance with the configuration to build a new model
|
|
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
|
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
|
This can be used to compute head importance metrics. Default: False
|
|
|
|
Inputs:
|
|
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
|
|
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
|
|
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
|
|
with the position indices (selected in the range [0, config.n_positions - 1[.
|
|
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
|
|
You can use it to add a third type of embedding to each input token in the sequence
|
|
(the previous two being the word and position embeddings).
|
|
The input, position and token_type embeddings are summed inside the Transformer before the first
|
|
self-attention block.
|
|
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
|
|
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
|
|
is only computed for the labels set in [0, ..., vocab_size]
|
|
`past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
|
|
(key and values in the attention blocks) to speed up sequential decoding
|
|
(this is the presents output of the model, cf. below).
|
|
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
|
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
|
|
|
Outputs:
|
|
if `lm_labels` is not `None`:
|
|
Outputs the language modeling loss.
|
|
else a tuple:
|
|
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size]
|
|
(or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids)
|
|
`presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
|
|
torch.FloatTensors. They can be reused to speed up sequential decoding.
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into BPE token ids
|
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
|
|
|
config = modeling_gpt2.GPT2Config()
|
|
|
|
model = modeling_gpt2.GPT2LMHeadModel(config)
|
|
lm_logits, presents = model(input_ids)
|
|
```
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super(GPT2LMHeadModel, self).__init__(config)
|
|
self.transformer = GPT2Model(config)
|
|
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
|
|
self.apply(self.init_weights)
|
|
|
|
def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
|
|
""" Update input and output embeddings with new embedding matrice
|
|
Make sure we are sharing the embeddings
|
|
"""
|
|
self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
|
|
self.transformer.set_num_special_tokens(num_special_tokens)
|
|
self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
|
|
|
|
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None, head_mask=None):
|
|
transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, past, head_mask)
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
|
|
outputs = [lm_logits] + transformer_outputs[1:]
|
|
if lm_labels is not None:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
shift_labels = lm_labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss(ignore_index=-1)
|
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
|
|
shift_labels.view(-1))
|
|
outputs = [loss] + outputs
|
|
|
|
return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions)
|
|
|
|
|
|
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
"""OpenAI GPT-2 model with a Language Modeling and a Multiple Choice head ("Language Models are Unsupervised Multitask Learners").
|
|
|
|
Params:
|
|
`config`: a GPT2Config class instance with the configuration to build a new model
|
|
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
|
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
|
This can be used to compute head importance metrics. Default: False
|
|
|
|
Inputs:
|
|
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
|
|
indices selected in the range [0, config.vocab_size[
|
|
`mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
|
|
which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
|
|
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
|
|
with the position indices (selected in the range [0, config.n_positions - 1[.
|
|
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
|
|
You can use it to add a third type of embedding to each input token in the sequence
|
|
(the previous two being the word and position embeddings).
|
|
The input, position and token_type embeddings are summed inside the Transformer before the first
|
|
self-attention block.
|
|
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
|
|
with indices selected in [-1, 0, ..., config.vocab_size]. All labels set to -1 are ignored (masked), the loss
|
|
is only computed for the labels set in [0, ..., config.vocab_size]
|
|
`multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
|
|
with indices selected in [0, ..., num_choices].
|
|
`past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
|
|
(key and values in the attention blocks) to speed up sequential decoding
|
|
(this is the presents output of the model, cf. below).
|
|
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
|
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
|
|
|
Outputs:
|
|
if `lm_labels` and `multiple_choice_labels` are not `None`:
|
|
Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
|
|
else: a tuple with
|
|
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size]
|
|
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
|
|
`presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
|
|
torch.FloatTensors. They can be reused to speed up sequential decoding.
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into BPE token ids
|
|
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]]) # (bsz, number of choice, seq length)
|
|
mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
|
|
|
|
config = modeling_gpt2.GPT2Config()
|
|
|
|
model = modeling_gpt2.GPT2DoubleHeadsModel(config)
|
|
lm_logits, multiple_choice_logits, presents = model(input_ids, mc_token_ids)
|
|
```
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super(GPT2DoubleHeadsModel, self).__init__(config)
|
|
self.transformer = GPT2Model(config)
|
|
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
|
|
self.multiple_choice_head = GPT2MultipleChoiceHead(config)
|
|
|
|
self.apply(self.init_weights)
|
|
|
|
def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
|
|
""" Update input and output embeddings with new embedding matrice
|
|
Make sure we are sharing the embeddings
|
|
"""
|
|
self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
|
|
self.transformer.set_num_special_tokens(num_special_tokens)
|
|
self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
|
|
|
|
def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
|
|
position_ids=None, past=None, head_mask=None):
|
|
transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, past, head_mask)
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
|
|
|
|
outputs = [lm_logits, mc_logits] + transformer_outputs[1:]
|
|
if mc_labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
|
|
mc_labels.view(-1))
|
|
outputs = [loss] + outputs
|
|
if lm_labels is not None:
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
shift_labels = lm_labels[..., 1:].contiguous()
|
|
loss_fct = CrossEntropyLoss(ignore_index=-1)
|
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
|
|
shift_labels.view(-1))
|
|
outputs = [loss] + outputs
|
|
|
|
return outputs # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)
|