mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
update config tests and circle-ci
This commit is contained in:
parent
1484d67de9
commit
99ae5ab883
@ -10,7 +10,7 @@ jobs:
|
||||
- run: sudo pip install pytest codecov pytest-cov
|
||||
- run: sudo pip install spacy ftfy==4.4.3
|
||||
- run: sudo python -m spacy download en
|
||||
- run: python -m pytest -sv tests/ --cov
|
||||
- run: python -m pytest -sv ./pytorch_pretrained_bert/tests/ --cov
|
||||
- run: codecov
|
||||
build_py2:
|
||||
working_directory: ~/pytorch-pretrained-BERT
|
||||
@ -22,7 +22,7 @@ jobs:
|
||||
- run: sudo pip install pytest codecov pytest-cov
|
||||
- run: sudo pip install spacy ftfy==4.4.3
|
||||
- run: sudo python -m spacy download en
|
||||
- run: python -m pytest -sv tests/ --cov
|
||||
- run: python -m pytest -sv ./pytorch_pretrained_bert/tests/ --cov
|
||||
- run: codecov
|
||||
workflows:
|
||||
version: 2
|
||||
|
@ -175,6 +175,19 @@ class GPT2Config(PretrainedConfig):
|
||||
def total_tokens_embeddings(self):
|
||||
return self.vocab_size + self.n_special
|
||||
|
||||
@property
|
||||
def hidden_size(self):
|
||||
return self.n_embd
|
||||
|
||||
@property
|
||||
def num_attention_heads(self):
|
||||
return self.n_head
|
||||
|
||||
@property
|
||||
def num_hidden_layers(self):
|
||||
return self.n_layer
|
||||
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, nx, n_ctx, config, scale=False):
|
||||
|
@ -206,6 +206,18 @@ class OpenAIGPTConfig(PretrainedConfig):
|
||||
def total_tokens_embeddings(self):
|
||||
return self.vocab_size + self.n_special
|
||||
|
||||
@property
|
||||
def hidden_size(self):
|
||||
return self.n_embd
|
||||
|
||||
@property
|
||||
def num_attention_heads(self):
|
||||
return self.n_head
|
||||
|
||||
@property
|
||||
def num_hidden_layers(self):
|
||||
return self.n_layer
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, nx, n_ctx, config, scale=False):
|
||||
|
@ -289,6 +289,17 @@ class TransfoXLConfig(PretrainedConfig):
|
||||
raise ValueError("First argument must be either a vocabulary size (int)"
|
||||
"or the path to a pretrained model config file (str)")
|
||||
|
||||
@property
|
||||
def hidden_size(self):
|
||||
return self.d_model
|
||||
|
||||
@property
|
||||
def num_attention_heads(self):
|
||||
return self.n_head
|
||||
|
||||
@property
|
||||
def num_hidden_layers(self):
|
||||
return self.n_layer
|
||||
|
||||
|
||||
class PositionalEmbedding(nn.Module):
|
||||
|
@ -313,6 +313,18 @@ class XLNetConfig(PretrainedConfig):
|
||||
raise ValueError("First argument must be either a vocabulary size (int)"
|
||||
"or the path to a pretrained model config file (str)")
|
||||
|
||||
@property
|
||||
def hidden_size(self):
|
||||
return self.d_model
|
||||
|
||||
@property
|
||||
def num_attention_heads(self):
|
||||
return self.n_head
|
||||
|
||||
@property
|
||||
def num_hidden_layers(self):
|
||||
return self.n_layer
|
||||
|
||||
|
||||
try:
|
||||
from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
|
||||
|
@ -184,6 +184,12 @@ class ConfigTester(object):
|
||||
self.config_class = config_class
|
||||
self.inputs_dict = kwargs
|
||||
|
||||
def create_and_test_config_common_properties(self):
|
||||
config = self.config_class(**self.inputs_dict)
|
||||
self.parent.assertTrue(hasattr(config, 'hidden_size'))
|
||||
self.parent.assertTrue(hasattr(config, 'num_attention_heads'))
|
||||
self.parent.assertTrue(hasattr(config, 'num_hidden_layers'))
|
||||
|
||||
def create_and_test_config_to_json_string(self):
|
||||
config = self.config_class(**self.inputs_dict)
|
||||
obj = json.loads(config.to_json_string())
|
||||
@ -199,6 +205,7 @@ class ConfigTester(object):
|
||||
self.parent.assertEqual(config_second.to_dict(), config_first.to_dict())
|
||||
|
||||
def run_common_tests(self):
|
||||
self.create_and_test_config_common_properties()
|
||||
self.create_and_test_config_to_json_string()
|
||||
self.create_and_test_config_to_json_file()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user