transformers/docs/source/en/model_doc/roc_bert.md
SohamPrabhu a396f4324b
Update roc bert docs (#38835)
* Moved the sources to the right

* small Changes

* Some Changes to moonshine

* Added the install to pipline

* updated the monshine model card

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated Documentation According to changes

* Fixed the model with the commits

* Changes to the roc_bert

* Final Update to the branch

* Adds Quantizaiton to the model

* Finsihed Fixing the Roc_bert docs

* Fixed Moshi

* Fixed Problems

* Fixed Problems

* Fixed Problems

* Fixed Problems

* Fixed Problems

* Fixed Problems

* Added the install to pipline

* updated the monshine model card

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated Documentation According to changes

* Fixed the model with the commits

* Fixed the problems

* Final Fix

* Final Fix

* Final Fix

* Update roc_bert.md

---------

Co-authored-by: Your Name <sohamprabhu@Mac.fios-router.home>
Co-authored-by: Your Name <sohamprabhu@Sohams-MacBook-Air.local>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-17 11:02:18 -07:00

4.0 KiB

PyTorch

RoCBert

RoCBert is a pretrained Chinese BERT model designed against adversarial attacks like typos and synonyms. It is pretrained with a contrastive learning objective to align normal and adversarial text examples. The examples include different semantic, phonetic, and visual features of Chinese. This makes RoCBert more robust against manipulation.

You can find all the original RoCBert checkpoints under the weiweishi profile.

Tip

This model was contributed by weiweishi.

Click on the RoCBert models in the right sidebar for more examples of how to apply RoCBert to different Chinese language tasks.

The example below demonstrates how to predict the [MASK] token with [Pipeline], [AutoModel], and from the command line.

import torch
from transformers import pipeline

pipeline = pipeline(
   task="fill-mask",
   model="weiweishi/roc-bert-base-zh",
   torch_dtype=torch.float16,
   device=0
)
pipeline("這家餐廳的拉麵是我[MASK]過的最好的拉麵之")
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(
   "weiweishi/roc-bert-base-zh",
)
model = AutoModelForMaskedLM.from_pretrained(
   "weiweishi/roc-bert-base-zh",
   torch_dtype=torch.float16,
   device_map="auto",
)
inputs = tokenizer("這家餐廳的拉麵是我[MASK]過的最好的拉麵之", return_tensors="pt").to("cuda")

with torch.no_grad():
   outputs = model(**inputs)
   predictions = outputs.logits

masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)

print(f"The predicted token is: {predicted_token}")
echo -e "這家餐廳的拉麵是我[MASK]過的最好的拉麵之" | transformers-cli run --task fill-mask --model weiweishi/roc-bert-base-zh --device 0

RoCBertConfig

autodoc RoCBertConfig - all

RoCBertTokenizer

autodoc RoCBertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary

RoCBertModel

autodoc RoCBertModel - forward

RoCBertForPreTraining

autodoc RoCBertForPreTraining - forward

RoCBertForCausalLM

autodoc RoCBertForCausalLM - forward

RoCBertForMaskedLM

autodoc RoCBertForMaskedLM - forward

RoCBertForSequenceClassification

autodoc transformers.RoCBertForSequenceClassification - forward

RoCBertForMultipleChoice

autodoc transformers.RoCBertForMultipleChoice - forward

RoCBertForTokenClassification

autodoc transformers.RoCBertForTokenClassification - forward

RoCBertForQuestionAnswering

autodoc RoCBertForQuestionAnswering - forward