transformers/tests/models/omdet_turbo/test_modeling_omdet_turbo.py
Yao Matrix 89542fb81c
enable more test cases on xpu (#38572)
* enable glm4 integration cases on XPU, set xpu expectation for blip2

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine wording

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine test case names

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* run

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* add gemma2 and chameleon

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix review comments

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Matrix YAO <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-06-06 09:29:51 +02:00

913 lines
41 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch OmDet-Turbo model."""
import copy
import unittest
from io import BytesIO
import requests
from transformers import OmDetTurboConfig, is_torch_available, is_vision_available
from transformers.feature_extraction_utils import BatchFeature
from transformers.file_utils import cached_property
from transformers.testing_utils import (
require_timm,
require_torch,
require_torch_accelerator,
require_vision,
slow,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
import torch.nn.functional as F
from transformers import OmDetTurboForObjectDetection
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor
class OmDetTurboModelTester:
def __init__(
self,
parent,
batch_size=6,
is_training=False,
num_channels=3,
max_text_len=7,
num_classes=3,
use_timm_backbone=False,
backbone=None,
apply_layernorm_after_vision_backbone=False,
image_size=224,
text_projection_in_dim=16,
text_projection_out_dim=16,
class_embed_dim=16,
hidden_size=8,
num_hidden_layers=2,
num_attention_heads=2,
num_queries=20,
encoder_in_channels=(16, 32, 64),
encoder_dim_feedforward=32,
num_projection_layers=1,
decoder_n_points=4,
num_feature_levels=3,
):
super().__init__()
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.num_channels = num_channels
self.max_text_len = max_text_len
self.num_classes = num_classes
self.use_timm_backbone = use_timm_backbone
self.backbone = backbone
self.apply_layernorm_after_vision_backbone = apply_layernorm_after_vision_backbone
self.image_size = image_size
self.text_projection_in_dim = text_projection_in_dim
self.text_projection_out_dim = text_projection_out_dim
self.class_embed_dim = class_embed_dim
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_queries = num_queries
self.encoder_in_channels = encoder_in_channels
self.encoder_dim_feedforward = encoder_dim_feedforward
self.num_projection_layers = num_projection_layers
self.decoder_n_points = decoder_n_points
self.num_feature_levels = num_feature_levels
self.encoder_seq_length_vision = self.image_size // 32
self.decoder_seq_length = self.num_queries
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
input_ids_tasks = ids_tensor([self.batch_size, self.max_text_len], self.num_classes)
input_ids_tasks = input_ids_tasks.to(torch_device)
input_ids_classes = torch.cat(
[ids_tensor([self.num_classes, self.max_text_len], self.num_classes) for _ in range(self.batch_size)]
)
input_ids_classes = input_ids_classes.to(torch_device)
attention_mask_tasks = torch.ones_like(input_ids_tasks, device=torch_device)
attention_mask_classes = torch.ones_like(input_ids_classes, device=torch_device)
classes_structure = torch.ones(self.batch_size, dtype=torch.long, device=torch_device) * self.num_classes
encoding = BatchFeature()
encoding.update(
{
"pixel_values": pixel_values,
"classes_input_ids": input_ids_classes,
"classes_attention_mask": attention_mask_classes,
"tasks_input_ids": input_ids_tasks,
"tasks_attention_mask": attention_mask_tasks,
"classes_structure": classes_structure,
}
)
config = self.get_config()
return config, encoding
def get_config(self):
text_backbone = {
"hidden_size": 16,
"num_hidden_layers": 2,
"num_attention_heads": 2,
"intermediate_size": 16,
"max_position_embeddings": 8,
"model_type": "clip_text_model",
}
backbone_config = {
"embed_dim": self.hidden_size,
"depths": (1, 1, 1, 1),
"num_heads": (1, 1, 1, 1),
"window_size": 7,
"image_size": self.image_size,
"out_indices": (2, 3, 4),
"model_type": "swin",
}
return OmDetTurboConfig(
text_config=text_backbone,
backbone_config=backbone_config,
use_timm_backbone=self.use_timm_backbone,
backbone=self.backbone,
apply_layernorm_after_vision_backbone=self.apply_layernorm_after_vision_backbone,
decoder_num_layers=self.num_hidden_layers,
image_size=self.image_size,
encoder_in_channels=self.encoder_in_channels,
num_queries=self.num_queries,
encoder_layers=self.num_hidden_layers,
encoder_projection_indices=[2] * self.num_projection_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_num_heads=self.num_attention_heads,
decoder_num_points=self.decoder_n_points,
num_feature_levels=self.num_feature_levels,
encoder_dim_feedforward=self.encoder_dim_feedforward,
task_encoder_hidden_dim=self.encoder_dim_feedforward,
decoder_dim_feedforward=self.encoder_dim_feedforward,
class_embed_dim=self.class_embed_dim,
text_projection_in_dim=self.text_projection_in_dim,
text_projection_out_dim=self.text_projection_out_dim,
encoder_hidden_dim=self.hidden_size,
decoder_hidden_dim=self.hidden_size,
vision_features_channels=[self.hidden_size, self.hidden_size, self.hidden_size],
)
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_object_detection_head_model(self, config, inputs_dict):
model = OmDetTurboForObjectDetection(config=config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
self.parent.assertEqual(result.decoder_coord_logits.shape, (self.batch_size, self.num_queries, 4))
self.parent.assertEqual(
result.decoder_class_logits.shape, (self.batch_size, self.num_queries, self.num_classes)
)
@require_torch
class OmDetTurboModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (OmDetTurboForObjectDetection,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_head_masking = False
pipeline_model_mapping = (
{"zero-shot-object-detection": OmDetTurboForObjectDetection} if is_torch_available() else {}
)
# special case for head models
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
return inputs_dict
def setUp(self):
self.model_tester = OmDetTurboModelTester(self)
self.config_tester = ConfigTester(
self,
config_class=OmDetTurboConfig,
has_text_modality=False,
common_properties=["d_model", "encoder_attention_heads", "decoder_num_heads"],
)
def test_config(self):
self.config_tester.run_common_tests()
def test_object_detection_head_model(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_object_detection_head_model(config, inputs_dict)
@unittest.skip(
reason="Unsupported as classes_input_ids are classes input are flattened by the processor: https://github.com/huggingface/transformers/issues/33669"
)
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip(reason="OmDet-Turbo does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="OmDet-Turbo does not have 'input_ids' and 'attention_mask'")
def test_torchscript_output_attentions(self):
pass
@unittest.skip(reason="OmDet-Turbo does not have 'input_ids' and 'attention_mask'")
def test_torchscript_output_hidden_states(self):
pass
@unittest.skip(reason="OmDet-Turbo does not have 'input_ids' and 'attention_mask'")
def test_torchscript_simple(self):
pass
@unittest.skip(reason="OmDet-Turbo does not have 'input_ids' and 'attention_mask'")
def test_torchscript_output_hidden_state(self):
pass
def test_resize_tokens_embeddings(self):
# rewrite as OmDet-Turbo does not have "input_ids" and "decoder_input_ids"
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
self.skipTest(reason="test_resize_embeddings is set to `False`")
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
model_embed_pre_resize = model.get_input_embeddings()
type_model_embed_pre_resize = type(model_embed_pre_resize)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
new_model_vocab_size = (
model.config.text_config.vocab_size
if hasattr(model.config, "text_config")
else model.config.vocab_size
)
self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check to make sure the type of embeddings returned post resizing is same as type of input
type_model_embed_post_resize = type(model_embed)
self.assertEqual(type_model_embed_pre_resize, type_model_embed_post_resize)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
new_model_vocab_size = (
model.config.text_config.vocab_size
if hasattr(model.config, "text_config")
else model.config.vocab_size
)
self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["tasks_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# make sure that classes_input_ids are resized as well
if "classes_input_ids" in inputs_dict:
inputs_dict["classes_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
new_model_vocab_size = (
model.config.text_config.vocab_size
if hasattr(model.config, "text_config")
else model.config.vocab_size
)
self.assertTrue(new_model_vocab_size + 10, model_vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
new_model_vocab_size = (
model.config.text_config.vocab_size
if hasattr(model.config, "text_config")
else model.config.vocab_size
)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
self.assertTrue(model_embed.weight.shape[0], new_model_vocab_size)
self.assertTrue(new_model_vocab_size, model.vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
# Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
target_dimension = 128
model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0], target_dimension)
with self.assertRaisesRegex(
ValueError,
"Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
):
model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)
# Overwrite as `init_reference_points` is not batch dependent and contains `inf` values
def test_batching_equivalence(self):
"""
Tests that the model supports batching and that the output is nearly the same for the same input in
different batch sizes.
(Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to
different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535)
"""
def get_tensor_equivalence_function(batched_input):
# models operating on continuous spaces have higher abs difference than LMs
# instead, we can rely on cos distance for image/speech models, similar to `diffusers`
if "input_ids" not in batched_input:
return lambda tensor1, tensor2: (
1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38)
)
return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2))
def recursive_check(batched_object, single_row_object, model_name, key):
if isinstance(batched_object, (list, tuple)):
for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
recursive_check(batched_object_value, single_row_object_value, model_name, key)
elif isinstance(batched_object, dict):
for batched_object_value, single_row_object_value in zip(
batched_object.values(), single_row_object.values()
):
recursive_check(batched_object_value, single_row_object_value, model_name, key)
# do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
elif batched_object is None or not isinstance(batched_object, torch.Tensor):
return
elif batched_object.dim() == 0:
return
elif key != "init_reference_points":
# init
# indexing the first element does not always work
# e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
slice_ids = [slice(0, index) for index in single_row_object.shape]
batched_row = batched_object[slice_ids]
self.assertFalse(
torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
)
self.assertFalse(
torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
)
self.assertFalse(
torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
)
self.assertFalse(
torch.isinf(single_row_object).any(),
f"Single row output has `inf` in {model_name} for key={key}",
)
self.assertTrue(
(equivalence(batched_row, single_row_object)) <= 1e-03,
msg=(
f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
f"Difference={equivalence(batched_row, single_row_object)}."
),
)
config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
equivalence = get_tensor_equivalence_function(batched_input)
for model_class in self.all_model_classes:
config.output_hidden_states = True
model_name = model_class.__name__
if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"):
config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
batched_input_prepared = self._prepare_for_class(batched_input, model_class)
model = model_class(config).to(torch_device).eval()
batch_size = self.model_tester.batch_size
single_row_input = {}
for key, value in batched_input_prepared.items():
single_batch_shape = value.shape[0] // batch_size
single_row_input[key] = value[:single_batch_shape]
with torch.no_grad():
model_batched_output = model(**batched_input_prepared)
model_row_output = model(**single_row_input)
if isinstance(model_batched_output, torch.Tensor):
model_batched_output = {"model_output": model_batched_output}
model_row_output = {"model_output": model_row_output}
for key in model_batched_output:
# DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan`
if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key:
model_batched_output[key] = model_batched_output[key][1:]
model_row_output[key] = model_row_output[key][1:]
if key in ("decoder_class_logits", "decoder_classes", "encoder_class_logits"):
# check if all elements are close to 0, if so skip the test as the test strugles with comparing
# tensors with all elements close to 0
if torch.allclose(
model_batched_output[key], torch.zeros_like(model_batched_output[key]), atol=1e-6
) and torch.allclose(model_row_output[key], torch.zeros_like(model_row_output[key]), atol=1e-6):
continue
recursive_check(model_batched_output[key], model_row_output[key], model_name, key)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class._from_config(config, attn_implementation="eager")
config = model.config
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions[-1]
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions[-1]
self.assertEqual(
len(attentions), self.model_tester.num_hidden_layers * self.model_tester.num_projection_layers
)
# Rest of the shape seems to depend on backbone output shapes and image size
self.assertListEqual(
list(attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.encoder_seq_length_vision**2,
self.model_tester.encoder_seq_length_vision**2,
],
)
# decoder attentions
decoder_attentions = outputs.decoder_attentions[0]
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.num_queries + self.model_tester.max_text_len,
self.model_tester.num_queries + self.model_tester.max_text_len,
],
)
# cross attentions
cross_attentions = outputs.decoder_attentions[-1]
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.num_feature_levels,
self.model_tester.decoder_n_points,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self_attentions = outputs.encoder_attentions[-1]
self.assertEqual(
len(self_attentions), self.model_tester.num_hidden_layers * self.model_tester.num_projection_layers
)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
self.model_tester.encoder_seq_length_vision**2,
self.model_tester.encoder_seq_length_vision**2,
],
)
# overwrite since encoder_hidden_states are 3-dim and not 2-dim
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_projection_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = self.model_tester.encoder_seq_length_vision
self.assertListEqual(list(hidden_states[0].shape[-3:]), [self.model_tester.hidden_size, seq_len, seq_len])
hidden_states = outputs.decoder_hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertIsInstance(hidden_states, (list, tuple))
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.decoder_seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# removed retain_grad and grad on decoder_hidden_states, as queries don't require grad
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
encoder_hidden_states = outputs.encoder_hidden_states[0]
encoder_attentions = outputs.encoder_attentions[0][0]
encoder_hidden_states.retain_grad()
encoder_attentions.retain_grad()
cross_attentions = outputs.decoder_attentions[-1][0]
cross_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(encoder_attentions.grad)
self.assertIsNotNone(cross_attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
if (
"embeddings" in name
or ".fc" in name
or "decoder.channel_projection_layers" in name
or "query_position_head" in name
or "decoder.encoder_vision_features" in name
):
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} seems not properly initialized",
)
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
return image
def prepare_text():
text_labels = ["cat", "remote"]
task = "Detect {}.".format(", ".join(text_labels))
return text_labels, task
def prepare_img_batched():
url1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
url2 = "http://images.cocodataset.org/train2017/000000257813.jpg"
url3 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
return [Image.open(BytesIO(requests.get(url).content)).convert("RGB") for url in [url1, url2, url3]]
def prepare_text_batched():
text_labels1 = ["cat", "remote"]
text_labels2 = ["boat"]
text_labels3 = ["statue", "trees", "torch"]
task1 = "Detect {}.".format(", ".join(text_labels1))
task2 = "Detect all the boat in the image."
task3 = "Focus on the foreground, detect statue, torch and trees."
return [text_labels1, text_labels2, text_labels3], [task1, task2, task3]
@require_timm
@require_vision
@slow
class OmDetTurboModelIntegrationTests(unittest.TestCase):
@cached_property
def default_processor(self):
return AutoProcessor.from_pretrained("omlab/omdet-turbo-swin-tiny-hf") if is_vision_available() else None
def test_inference_object_detection_head(self):
model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf").to(torch_device)
processor = self.default_processor
image = prepare_img()
text_labels, task = prepare_text()
encoding = processor(images=image, text=text_labels, task=task, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape_coord_logits = torch.Size((1, model.config.num_queries, 4))
expected_shape_class_logits = torch.Size((1, model.config.num_queries, 2))
self.assertEqual(outputs.decoder_coord_logits.shape, expected_shape_coord_logits)
self.assertEqual(outputs.decoder_class_logits.shape, expected_shape_class_logits)
expected_class_logits = torch.tensor([[[0.9427, -2.5958], [0.2105, -3.4569], [-2.6364, -4.1610]]]).to(
torch_device
)
expected_coord_logits = torch.tensor(
[[[0.2550, 0.5501, 0.4738, 0.8745], [0.7695, 0.4121, 0.4603, 0.7244], [0.7691, 0.4117, 0.4603, 0.7214]]]
).to(torch_device)
torch.testing.assert_close(outputs.decoder_class_logits[:3, :3], expected_class_logits, rtol=1e-1, atol=1e-1)
torch.testing.assert_close(outputs.decoder_coord_logits[:3, :3], expected_coord_logits, rtol=1e-3, atol=1e-3)
# verify grounded postprocessing
results = processor.post_process_grounded_object_detection(
outputs, text_labels=[text_labels], target_sizes=[image.size[::-1]]
)[0]
expected_scores = torch.tensor([0.7675, 0.7196, 0.5634, 0.5524]).to(torch_device)
expected_slice_boxes = torch.tensor([39.8870, 70.3522, 176.7424, 118.0354]).to(torch_device)
self.assertEqual(len(results["scores"]), 4)
torch.testing.assert_close(results["scores"], expected_scores, rtol=1e-2, atol=1e-2)
torch.testing.assert_close(results["boxes"][0, :], expected_slice_boxes, rtol=1e-2, atol=1e-2)
expected_text_labels = ["remote", "cat", "remote", "cat"]
self.assertListEqual(results["text_labels"], expected_text_labels)
def test_inference_object_detection_head_fp16(self):
model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf").to(
torch_device, dtype=torch.float16
)
processor = self.default_processor
image = prepare_img()
text_labels, task = prepare_text()
encoding = processor(images=image, text=text_labels, task=task, return_tensors="pt").to(
torch_device, dtype=torch.float16
)
with torch.no_grad():
outputs = model(**encoding)
expected_shape_coord_logits = torch.Size((1, model.config.num_queries, 4))
expected_shape_class_logits = torch.Size((1, model.config.num_queries, 2))
self.assertEqual(outputs.decoder_coord_logits.shape, expected_shape_coord_logits)
self.assertEqual(outputs.decoder_class_logits.shape, expected_shape_class_logits)
expected_class_logits = torch.tensor([[[0.9427, -2.5958], [0.2105, -3.4569], [-2.6364, -4.1610]]]).to(
torch_device, dtype=torch.float16
)
expected_coord_logits = torch.tensor(
[[[0.2550, 0.5501, 0.4738, 0.8745], [0.7695, 0.4121, 0.4603, 0.7244], [0.7691, 0.4117, 0.4603, 0.7214]]]
).to(torch_device, dtype=torch.float16)
torch.testing.assert_close(outputs.decoder_class_logits[:3, :3], expected_class_logits, rtol=1e-1, atol=1e-1)
torch.testing.assert_close(outputs.decoder_coord_logits[:3, :3], expected_coord_logits, rtol=1e-3, atol=1e-3)
# verify grounded postprocessing
results = processor.post_process_grounded_object_detection(
outputs, text_labels=[text_labels], target_sizes=[image.size[::-1]]
)[0]
expected_scores = torch.tensor([0.7675, 0.7196, 0.5634, 0.5524]).to(torch_device, dtype=torch.float16)
expected_slice_boxes = torch.tensor([39.8870, 70.3522, 176.7424, 118.0354]).to(
torch_device, dtype=torch.float16
)
self.assertEqual(len(results["scores"]), 4)
torch.testing.assert_close(results["scores"], expected_scores, rtol=1e-2, atol=1e-2)
torch.testing.assert_close(results["boxes"][0, :], expected_slice_boxes, rtol=1e-1, atol=1e-1)
expected_text_labels = ["remote", "cat", "remote", "cat"]
self.assertListEqual(results["text_labels"], expected_text_labels)
def test_inference_object_detection_head_no_task(self):
model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf").to(torch_device)
processor = self.default_processor
image = prepare_img()
text_labels, _ = prepare_text()
encoding = processor(images=image, text=text_labels, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape_coord_logits = torch.Size((1, model.config.num_queries, 4))
expected_shape_class_logits = torch.Size((1, model.config.num_queries, 2))
self.assertEqual(outputs.decoder_coord_logits.shape, expected_shape_coord_logits)
self.assertEqual(outputs.decoder_class_logits.shape, expected_shape_class_logits)
expected_class_logits = torch.tensor([[[0.9427, -2.5958], [0.2105, -3.4569], [-2.6364, -4.1610]]]).to(
torch_device
)
expected_coord_logits = torch.tensor(
[[[0.2550, 0.5501, 0.4738, 0.8745], [0.7695, 0.4121, 0.4603, 0.7244], [0.7691, 0.4117, 0.4603, 0.7214]]]
).to(torch_device)
torch.testing.assert_close(outputs.decoder_class_logits[:3, :3], expected_class_logits, rtol=1e-1, atol=1e-1)
torch.testing.assert_close(outputs.decoder_coord_logits[:3, :3], expected_coord_logits, rtol=1e-3, atol=1e-3)
# verify grounded postprocessing
results = processor.post_process_grounded_object_detection(
outputs, text_labels=[text_labels], target_sizes=[image.size[::-1]]
)[0]
expected_scores = torch.tensor([0.7675, 0.7196, 0.5634, 0.5524]).to(torch_device)
expected_slice_boxes = torch.tensor([39.8870, 70.3522, 176.7424, 118.0354]).to(torch_device)
self.assertEqual(len(results["scores"]), 4)
torch.testing.assert_close(results["scores"], expected_scores, rtol=1e-2, atol=1e-2)
torch.testing.assert_close(results["boxes"][0, :], expected_slice_boxes, rtol=1e-2, atol=1e-2)
expected_text_labels = ["remote", "cat", "remote", "cat"]
self.assertListEqual(results["text_labels"], expected_text_labels)
def test_inference_object_detection_head_batched(self):
torch_device = "cpu"
model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf").to(torch_device)
processor = self.default_processor
images_batched = prepare_img_batched()
text_labels_batched, tasks_batched = prepare_text_batched()
encoding = processor(
images=images_batched, text=text_labels_batched, task=tasks_batched, return_tensors="pt"
).to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape_coord_logits = torch.Size((len(images_batched), model.config.num_queries, 4))
expected_shape_class_logits = torch.Size((len(images_batched), model.config.num_queries, 3))
self.assertEqual(outputs.decoder_coord_logits.shape, expected_shape_coord_logits)
self.assertEqual(outputs.decoder_class_logits.shape, expected_shape_class_logits)
expected_class_logits = torch.tensor(
[[[0.9427, -2.5958, -7.7601]], [[-2.3408, -9.3516, -9.3516]], [[1.0740, -2.3315, -1.1885]]]
).to(torch_device)
expected_coord_logits = torch.tensor(
[[[0.2550, 0.5501, 0.4738]], [[0.2535, 0.6006, 0.0353]], [[0.3742, 0.3337, 0.0666]]]
).to(torch_device)
torch.testing.assert_close(
outputs.decoder_class_logits[:, :1, :3], expected_class_logits, rtol=1e-1, atol=1e-1
)
torch.testing.assert_close(
outputs.decoder_coord_logits[:, :1, :3], expected_coord_logits, rtol=1e-3, atol=1e-3
)
# verify grounded postprocessing
results = processor.post_process_grounded_object_detection(
outputs,
text_labels=text_labels_batched,
target_sizes=[image.size[::-1] for image in images_batched],
score_threshold=0.2,
)
expected_scores = torch.tensor([0.7675, 0.3016, 0.7454]).to(torch_device)
expected_slice_boxes = torch.tensor(
[
[39.8870, 70.3522, 176.7424, 118.0354],
[146.5446, 219.7132, 209.6983, 251.0456],
[545.3470, 209.9055, 651.9860, 502.1882],
]
).to(torch_device)
self.assertListEqual([len(result["scores"]) for result in results], [4, 4, 6])
torch.testing.assert_close(
torch.stack([result["scores"][0] for result in results]), expected_scores, rtol=1e-2, atol=1e-2
)
torch.testing.assert_close(
torch.stack([result["boxes"][0, :] for result in results]), expected_slice_boxes, rtol=1e-2, atol=1e-2
)
expected_text_labels = [
["remote", "cat", "remote", "cat"],
["boat", "boat", "boat", "boat"],
["statue", "trees", "trees", "torch", "statue", "statue"],
]
self.assertListEqual([result["text_labels"] for result in results], expected_text_labels)
@require_torch_accelerator
def test_inference_object_detection_head_equivalence_cpu_accelerator(self):
processor = self.default_processor
image = prepare_img()
text_labels, task = prepare_text()
encoding = processor(images=image, text=text_labels, task=task, return_tensors="pt")
# 1. run model on CPU
model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
with torch.no_grad():
cpu_outputs = model(**encoding)
# 2. run model on accelerator
model.to(torch_device)
encoding = encoding.to(torch_device)
with torch.no_grad():
gpu_outputs = model(**encoding)
# 3. assert equivalence
expected_class_logits = torch.tensor([[[0.9427, -2.5958], [0.2105, -3.4569], [-2.6364, -4.1610]]])
expected_coord_logits = torch.tensor(
[[[0.2550, 0.5501, 0.4738, 0.8745], [0.7695, 0.4121, 0.4603, 0.7244], [0.7691, 0.4117, 0.4603, 0.7214]]]
)
torch.testing.assert_close(
cpu_outputs.decoder_class_logits[:3, :3], expected_class_logits, rtol=1e-1, atol=1e-1
)
torch.testing.assert_close(
cpu_outputs.decoder_coord_logits[:3, :3], expected_coord_logits, rtol=1e-3, atol=1e-3
)
# verify grounded postprocessing
results_cpu = processor.post_process_grounded_object_detection(
cpu_outputs, text_labels=[text_labels], target_sizes=[image.size[::-1]]
)[0]
result_gpu = processor.post_process_grounded_object_detection(
gpu_outputs, text_labels=[text_labels], target_sizes=[image.size[::-1]]
)[0]
torch.testing.assert_close(results_cpu["scores"], result_gpu["scores"].cpu(), rtol=1e-2, atol=1e-2)
torch.testing.assert_close(results_cpu["boxes"][0, :], result_gpu["boxes"][0, :].cpu(), rtol=1e-2, atol=1e-2)