# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch OmDet-Turbo model.""" import copy import unittest from io import BytesIO import requests from transformers import OmDetTurboConfig, is_torch_available, is_vision_available from transformers.feature_extraction_utils import BatchFeature from transformers.file_utils import cached_property from transformers.testing_utils import ( require_timm, require_torch, require_torch_accelerator, require_vision, slow, torch_device, ) from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch import torch.nn.functional as F from transformers import OmDetTurboForObjectDetection if is_vision_available(): from PIL import Image from transformers import AutoProcessor class OmDetTurboModelTester: def __init__( self, parent, batch_size=6, is_training=False, num_channels=3, max_text_len=7, num_classes=3, use_timm_backbone=False, backbone=None, apply_layernorm_after_vision_backbone=False, image_size=224, text_projection_in_dim=16, text_projection_out_dim=16, class_embed_dim=16, hidden_size=8, num_hidden_layers=2, num_attention_heads=2, num_queries=20, encoder_in_channels=(16, 32, 64), encoder_dim_feedforward=32, num_projection_layers=1, decoder_n_points=4, num_feature_levels=3, ): super().__init__() self.parent = parent self.batch_size = batch_size self.is_training = is_training self.num_channels = num_channels self.max_text_len = max_text_len self.num_classes = num_classes self.use_timm_backbone = use_timm_backbone self.backbone = backbone self.apply_layernorm_after_vision_backbone = apply_layernorm_after_vision_backbone self.image_size = image_size self.text_projection_in_dim = text_projection_in_dim self.text_projection_out_dim = text_projection_out_dim self.class_embed_dim = class_embed_dim self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_queries = num_queries self.encoder_in_channels = encoder_in_channels self.encoder_dim_feedforward = encoder_dim_feedforward self.num_projection_layers = num_projection_layers self.decoder_n_points = decoder_n_points self.num_feature_levels = num_feature_levels self.encoder_seq_length_vision = self.image_size // 32 self.decoder_seq_length = self.num_queries def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) input_ids_tasks = ids_tensor([self.batch_size, self.max_text_len], self.num_classes) input_ids_tasks = input_ids_tasks.to(torch_device) input_ids_classes = torch.cat( [ids_tensor([self.num_classes, self.max_text_len], self.num_classes) for _ in range(self.batch_size)] ) input_ids_classes = input_ids_classes.to(torch_device) attention_mask_tasks = torch.ones_like(input_ids_tasks, device=torch_device) attention_mask_classes = torch.ones_like(input_ids_classes, device=torch_device) classes_structure = torch.ones(self.batch_size, dtype=torch.long, device=torch_device) * self.num_classes encoding = BatchFeature() encoding.update( { "pixel_values": pixel_values, "classes_input_ids": input_ids_classes, "classes_attention_mask": attention_mask_classes, "tasks_input_ids": input_ids_tasks, "tasks_attention_mask": attention_mask_tasks, "classes_structure": classes_structure, } ) config = self.get_config() return config, encoding def get_config(self): text_backbone = { "hidden_size": 16, "num_hidden_layers": 2, "num_attention_heads": 2, "intermediate_size": 16, "max_position_embeddings": 8, "model_type": "clip_text_model", } backbone_config = { "embed_dim": self.hidden_size, "depths": (1, 1, 1, 1), "num_heads": (1, 1, 1, 1), "window_size": 7, "image_size": self.image_size, "out_indices": (2, 3, 4), "model_type": "swin", } return OmDetTurboConfig( text_config=text_backbone, backbone_config=backbone_config, use_timm_backbone=self.use_timm_backbone, backbone=self.backbone, apply_layernorm_after_vision_backbone=self.apply_layernorm_after_vision_backbone, decoder_num_layers=self.num_hidden_layers, image_size=self.image_size, encoder_in_channels=self.encoder_in_channels, num_queries=self.num_queries, encoder_layers=self.num_hidden_layers, encoder_projection_indices=[2] * self.num_projection_layers, encoder_attention_heads=self.num_attention_heads, decoder_num_heads=self.num_attention_heads, decoder_num_points=self.decoder_n_points, num_feature_levels=self.num_feature_levels, encoder_dim_feedforward=self.encoder_dim_feedforward, task_encoder_hidden_dim=self.encoder_dim_feedforward, decoder_dim_feedforward=self.encoder_dim_feedforward, class_embed_dim=self.class_embed_dim, text_projection_in_dim=self.text_projection_in_dim, text_projection_out_dim=self.text_projection_out_dim, encoder_hidden_dim=self.hidden_size, decoder_hidden_dim=self.hidden_size, vision_features_channels=[self.hidden_size, self.hidden_size, self.hidden_size], ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_object_detection_head_model(self, config, inputs_dict): model = OmDetTurboForObjectDetection(config=config) model.to(torch_device) model.eval() result = model(**inputs_dict) self.parent.assertEqual(result.decoder_coord_logits.shape, (self.batch_size, self.num_queries, 4)) self.parent.assertEqual( result.decoder_class_logits.shape, (self.batch_size, self.num_queries, self.num_classes) ) @require_torch class OmDetTurboModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (OmDetTurboForObjectDetection,) if is_torch_available() else () is_encoder_decoder = True test_pruning = False test_head_masking = False pipeline_model_mapping = ( {"zero-shot-object-detection": OmDetTurboForObjectDetection} if is_torch_available() else {} ) # special case for head models def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) return inputs_dict def setUp(self): self.model_tester = OmDetTurboModelTester(self) self.config_tester = ConfigTester( self, config_class=OmDetTurboConfig, has_text_modality=False, common_properties=["d_model", "encoder_attention_heads", "decoder_num_heads"], ) def test_config(self): self.config_tester.run_common_tests() def test_object_detection_head_model(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_object_detection_head_model(config, inputs_dict) @unittest.skip( reason="Unsupported as classes_input_ids are classes input are flattened by the processor: https://github.com/huggingface/transformers/issues/33669" ) def test_multi_gpu_data_parallel_forward(self): pass @unittest.skip(reason="OmDet-Turbo does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="OmDet-Turbo does not have 'input_ids' and 'attention_mask'") def test_torchscript_output_attentions(self): pass @unittest.skip(reason="OmDet-Turbo does not have 'input_ids' and 'attention_mask'") def test_torchscript_output_hidden_states(self): pass @unittest.skip(reason="OmDet-Turbo does not have 'input_ids' and 'attention_mask'") def test_torchscript_simple(self): pass @unittest.skip(reason="OmDet-Turbo does not have 'input_ids' and 'attention_mask'") def test_torchscript_output_hidden_state(self): pass def test_resize_tokens_embeddings(self): # rewrite as OmDet-Turbo does not have "input_ids" and "decoder_input_ids" ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: self.skipTest(reason="test_resize_embeddings is set to `False`") for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) model_embed_pre_resize = model.get_input_embeddings() type_model_embed_pre_resize = type(model_embed_pre_resize) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) new_model_vocab_size = ( model.config.text_config.vocab_size if hasattr(model.config, "text_config") else model.config.vocab_size ) self.assertEqual(new_model_vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check to make sure the type of embeddings returned post resizing is same as type of input type_model_embed_post_resize = type(model_embed) self.assertEqual(type_model_embed_pre_resize, type_model_embed_post_resize) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) new_model_vocab_size = ( model.config.text_config.vocab_size if hasattr(model.config, "text_config") else model.config.vocab_size ) self.assertEqual(new_model_vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["tasks_input_ids"].clamp_(max=model_vocab_size - 15 - 1) # make sure that classes_input_ids are resized as well if "classes_input_ids" in inputs_dict: inputs_dict["classes_input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) model_vocab_size = config.text_config.vocab_size if hasattr(config, "text_config") else config.vocab_size model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1) new_model_vocab_size = ( model.config.text_config.vocab_size if hasattr(model.config, "text_config") else model.config.vocab_size ) self.assertTrue(new_model_vocab_size + 10, model_vocab_size) model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64) new_model_vocab_size = ( model.config.text_config.vocab_size if hasattr(model.config, "text_config") else model.config.vocab_size ) self.assertTrue(model_embed.weight.shape[0] // 64, 0) self.assertTrue(model_embed.weight.shape[0], new_model_vocab_size) self.assertTrue(new_model_vocab_size, model.vocab_size) model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0] // 64, 0) # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size target_dimension = 128 model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0], target_dimension) with self.assertRaisesRegex( ValueError, "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer", ): model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3) # Overwrite as `init_reference_points` is not batch dependent and contains `inf` values def test_batching_equivalence(self): """ Tests that the model supports batching and that the output is nearly the same for the same input in different batch sizes. (Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535) """ def get_tensor_equivalence_function(batched_input): # models operating on continuous spaces have higher abs difference than LMs # instead, we can rely on cos distance for image/speech models, similar to `diffusers` if "input_ids" not in batched_input: return lambda tensor1, tensor2: ( 1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38) ) return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2)) def recursive_check(batched_object, single_row_object, model_name, key): if isinstance(batched_object, (list, tuple)): for batched_object_value, single_row_object_value in zip(batched_object, single_row_object): recursive_check(batched_object_value, single_row_object_value, model_name, key) elif isinstance(batched_object, dict): for batched_object_value, single_row_object_value in zip( batched_object.values(), single_row_object.values() ): recursive_check(batched_object_value, single_row_object_value, model_name, key) # do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects elif batched_object is None or not isinstance(batched_object, torch.Tensor): return elif batched_object.dim() == 0: return elif key != "init_reference_points": # init # indexing the first element does not always work # e.g. models that output similarity scores of size (N, M) would need to index [0, 0] slice_ids = [slice(0, index) for index in single_row_object.shape] batched_row = batched_object[slice_ids] self.assertFalse( torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}" ) self.assertFalse( torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}" ) self.assertFalse( torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}" ) self.assertFalse( torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}", ) self.assertTrue( (equivalence(batched_row, single_row_object)) <= 1e-03, msg=( f"Batched and Single row outputs are not equal in {model_name} for key={key}. " f"Difference={equivalence(batched_row, single_row_object)}." ), ) config, batched_input = self.model_tester.prepare_config_and_inputs_for_common() equivalence = get_tensor_equivalence_function(batched_input) for model_class in self.all_model_classes: config.output_hidden_states = True model_name = model_class.__name__ if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"): config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) batched_input_prepared = self._prepare_for_class(batched_input, model_class) model = model_class(config).to(torch_device).eval() batch_size = self.model_tester.batch_size single_row_input = {} for key, value in batched_input_prepared.items(): single_batch_shape = value.shape[0] // batch_size single_row_input[key] = value[:single_batch_shape] with torch.no_grad(): model_batched_output = model(**batched_input_prepared) model_row_output = model(**single_row_input) if isinstance(model_batched_output, torch.Tensor): model_batched_output = {"model_output": model_batched_output} model_row_output = {"model_output": model_row_output} for key in model_batched_output: # DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan` if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key: model_batched_output[key] = model_batched_output[key][1:] model_row_output[key] = model_row_output[key][1:] if key in ("decoder_class_logits", "decoder_classes", "encoder_class_logits"): # check if all elements are close to 0, if so skip the test as the test strugles with comparing # tensors with all elements close to 0 if torch.allclose( model_batched_output[key], torch.zeros_like(model_batched_output[key]), atol=1e-6 ) and torch.allclose(model_row_output[key], torch.zeros_like(model_row_output[key]), atol=1e-6): continue recursive_check(model_batched_output[key], model_row_output[key], model_name, key) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class._from_config(config, attn_implementation="eager") config = model.config model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions[-1] self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions[-1] self.assertEqual( len(attentions), self.model_tester.num_hidden_layers * self.model_tester.num_projection_layers ) # Rest of the shape seems to depend on backbone output shapes and image size self.assertListEqual( list(attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.encoder_seq_length_vision**2, self.model_tester.encoder_seq_length_vision**2, ], ) # decoder attentions decoder_attentions = outputs.decoder_attentions[0] self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.num_queries + self.model_tester.max_text_len, self.model_tester.num_queries + self.model_tester.max_text_len, ], ) # cross attentions cross_attentions = outputs.decoder_attentions[-1] self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.num_feature_levels, self.model_tester.decoder_n_points, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self_attentions = outputs.encoder_attentions[-1] self.assertEqual( len(self_attentions), self.model_tester.num_hidden_layers * self.model_tester.num_projection_layers ) self.assertListEqual( list(attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.encoder_seq_length_vision**2, self.model_tester.encoder_seq_length_vision**2, ], ) # overwrite since encoder_hidden_states are 3-dim and not 2-dim def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_projection_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = self.model_tester.encoder_seq_length_vision self.assertListEqual(list(hidden_states[0].shape[-3:]), [self.model_tester.hidden_size, seq_len, seq_len]) hidden_states = outputs.decoder_hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # removed retain_grad and grad on decoder_hidden_states, as queries don't require grad def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_attentions = outputs.encoder_attentions[0][0] encoder_hidden_states.retain_grad() encoder_attentions.retain_grad() cross_attentions = outputs.decoder_attentions[-1][0] cross_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(cross_attentions.grad) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: if ( "embeddings" in name or ".fc" in name or "decoder.channel_projection_layers" in name or "query_position_head" in name or "decoder.encoder_vision_features" in name ): continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} seems not properly initialized", ) # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") return image def prepare_text(): text_labels = ["cat", "remote"] task = "Detect {}.".format(", ".join(text_labels)) return text_labels, task def prepare_img_batched(): url1 = "http://images.cocodataset.org/val2017/000000039769.jpg" url2 = "http://images.cocodataset.org/train2017/000000257813.jpg" url3 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" return [Image.open(BytesIO(requests.get(url).content)).convert("RGB") for url in [url1, url2, url3]] def prepare_text_batched(): text_labels1 = ["cat", "remote"] text_labels2 = ["boat"] text_labels3 = ["statue", "trees", "torch"] task1 = "Detect {}.".format(", ".join(text_labels1)) task2 = "Detect all the boat in the image." task3 = "Focus on the foreground, detect statue, torch and trees." return [text_labels1, text_labels2, text_labels3], [task1, task2, task3] @require_timm @require_vision @slow class OmDetTurboModelIntegrationTests(unittest.TestCase): @cached_property def default_processor(self): return AutoProcessor.from_pretrained("omlab/omdet-turbo-swin-tiny-hf") if is_vision_available() else None def test_inference_object_detection_head(self): model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf").to(torch_device) processor = self.default_processor image = prepare_img() text_labels, task = prepare_text() encoding = processor(images=image, text=text_labels, task=task, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**encoding) expected_shape_coord_logits = torch.Size((1, model.config.num_queries, 4)) expected_shape_class_logits = torch.Size((1, model.config.num_queries, 2)) self.assertEqual(outputs.decoder_coord_logits.shape, expected_shape_coord_logits) self.assertEqual(outputs.decoder_class_logits.shape, expected_shape_class_logits) expected_class_logits = torch.tensor([[[0.9427, -2.5958], [0.2105, -3.4569], [-2.6364, -4.1610]]]).to( torch_device ) expected_coord_logits = torch.tensor( [[[0.2550, 0.5501, 0.4738, 0.8745], [0.7695, 0.4121, 0.4603, 0.7244], [0.7691, 0.4117, 0.4603, 0.7214]]] ).to(torch_device) torch.testing.assert_close(outputs.decoder_class_logits[:3, :3], expected_class_logits, rtol=1e-1, atol=1e-1) torch.testing.assert_close(outputs.decoder_coord_logits[:3, :3], expected_coord_logits, rtol=1e-3, atol=1e-3) # verify grounded postprocessing results = processor.post_process_grounded_object_detection( outputs, text_labels=[text_labels], target_sizes=[image.size[::-1]] )[0] expected_scores = torch.tensor([0.7675, 0.7196, 0.5634, 0.5524]).to(torch_device) expected_slice_boxes = torch.tensor([39.8870, 70.3522, 176.7424, 118.0354]).to(torch_device) self.assertEqual(len(results["scores"]), 4) torch.testing.assert_close(results["scores"], expected_scores, rtol=1e-2, atol=1e-2) torch.testing.assert_close(results["boxes"][0, :], expected_slice_boxes, rtol=1e-2, atol=1e-2) expected_text_labels = ["remote", "cat", "remote", "cat"] self.assertListEqual(results["text_labels"], expected_text_labels) def test_inference_object_detection_head_fp16(self): model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf").to( torch_device, dtype=torch.float16 ) processor = self.default_processor image = prepare_img() text_labels, task = prepare_text() encoding = processor(images=image, text=text_labels, task=task, return_tensors="pt").to( torch_device, dtype=torch.float16 ) with torch.no_grad(): outputs = model(**encoding) expected_shape_coord_logits = torch.Size((1, model.config.num_queries, 4)) expected_shape_class_logits = torch.Size((1, model.config.num_queries, 2)) self.assertEqual(outputs.decoder_coord_logits.shape, expected_shape_coord_logits) self.assertEqual(outputs.decoder_class_logits.shape, expected_shape_class_logits) expected_class_logits = torch.tensor([[[0.9427, -2.5958], [0.2105, -3.4569], [-2.6364, -4.1610]]]).to( torch_device, dtype=torch.float16 ) expected_coord_logits = torch.tensor( [[[0.2550, 0.5501, 0.4738, 0.8745], [0.7695, 0.4121, 0.4603, 0.7244], [0.7691, 0.4117, 0.4603, 0.7214]]] ).to(torch_device, dtype=torch.float16) torch.testing.assert_close(outputs.decoder_class_logits[:3, :3], expected_class_logits, rtol=1e-1, atol=1e-1) torch.testing.assert_close(outputs.decoder_coord_logits[:3, :3], expected_coord_logits, rtol=1e-3, atol=1e-3) # verify grounded postprocessing results = processor.post_process_grounded_object_detection( outputs, text_labels=[text_labels], target_sizes=[image.size[::-1]] )[0] expected_scores = torch.tensor([0.7675, 0.7196, 0.5634, 0.5524]).to(torch_device, dtype=torch.float16) expected_slice_boxes = torch.tensor([39.8870, 70.3522, 176.7424, 118.0354]).to( torch_device, dtype=torch.float16 ) self.assertEqual(len(results["scores"]), 4) torch.testing.assert_close(results["scores"], expected_scores, rtol=1e-2, atol=1e-2) torch.testing.assert_close(results["boxes"][0, :], expected_slice_boxes, rtol=1e-1, atol=1e-1) expected_text_labels = ["remote", "cat", "remote", "cat"] self.assertListEqual(results["text_labels"], expected_text_labels) def test_inference_object_detection_head_no_task(self): model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf").to(torch_device) processor = self.default_processor image = prepare_img() text_labels, _ = prepare_text() encoding = processor(images=image, text=text_labels, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**encoding) expected_shape_coord_logits = torch.Size((1, model.config.num_queries, 4)) expected_shape_class_logits = torch.Size((1, model.config.num_queries, 2)) self.assertEqual(outputs.decoder_coord_logits.shape, expected_shape_coord_logits) self.assertEqual(outputs.decoder_class_logits.shape, expected_shape_class_logits) expected_class_logits = torch.tensor([[[0.9427, -2.5958], [0.2105, -3.4569], [-2.6364, -4.1610]]]).to( torch_device ) expected_coord_logits = torch.tensor( [[[0.2550, 0.5501, 0.4738, 0.8745], [0.7695, 0.4121, 0.4603, 0.7244], [0.7691, 0.4117, 0.4603, 0.7214]]] ).to(torch_device) torch.testing.assert_close(outputs.decoder_class_logits[:3, :3], expected_class_logits, rtol=1e-1, atol=1e-1) torch.testing.assert_close(outputs.decoder_coord_logits[:3, :3], expected_coord_logits, rtol=1e-3, atol=1e-3) # verify grounded postprocessing results = processor.post_process_grounded_object_detection( outputs, text_labels=[text_labels], target_sizes=[image.size[::-1]] )[0] expected_scores = torch.tensor([0.7675, 0.7196, 0.5634, 0.5524]).to(torch_device) expected_slice_boxes = torch.tensor([39.8870, 70.3522, 176.7424, 118.0354]).to(torch_device) self.assertEqual(len(results["scores"]), 4) torch.testing.assert_close(results["scores"], expected_scores, rtol=1e-2, atol=1e-2) torch.testing.assert_close(results["boxes"][0, :], expected_slice_boxes, rtol=1e-2, atol=1e-2) expected_text_labels = ["remote", "cat", "remote", "cat"] self.assertListEqual(results["text_labels"], expected_text_labels) def test_inference_object_detection_head_batched(self): torch_device = "cpu" model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf").to(torch_device) processor = self.default_processor images_batched = prepare_img_batched() text_labels_batched, tasks_batched = prepare_text_batched() encoding = processor( images=images_batched, text=text_labels_batched, task=tasks_batched, return_tensors="pt" ).to(torch_device) with torch.no_grad(): outputs = model(**encoding) expected_shape_coord_logits = torch.Size((len(images_batched), model.config.num_queries, 4)) expected_shape_class_logits = torch.Size((len(images_batched), model.config.num_queries, 3)) self.assertEqual(outputs.decoder_coord_logits.shape, expected_shape_coord_logits) self.assertEqual(outputs.decoder_class_logits.shape, expected_shape_class_logits) expected_class_logits = torch.tensor( [[[0.9427, -2.5958, -7.7601]], [[-2.3408, -9.3516, -9.3516]], [[1.0740, -2.3315, -1.1885]]] ).to(torch_device) expected_coord_logits = torch.tensor( [[[0.2550, 0.5501, 0.4738]], [[0.2535, 0.6006, 0.0353]], [[0.3742, 0.3337, 0.0666]]] ).to(torch_device) torch.testing.assert_close( outputs.decoder_class_logits[:, :1, :3], expected_class_logits, rtol=1e-1, atol=1e-1 ) torch.testing.assert_close( outputs.decoder_coord_logits[:, :1, :3], expected_coord_logits, rtol=1e-3, atol=1e-3 ) # verify grounded postprocessing results = processor.post_process_grounded_object_detection( outputs, text_labels=text_labels_batched, target_sizes=[image.size[::-1] for image in images_batched], score_threshold=0.2, ) expected_scores = torch.tensor([0.7675, 0.3016, 0.7454]).to(torch_device) expected_slice_boxes = torch.tensor( [ [39.8870, 70.3522, 176.7424, 118.0354], [146.5446, 219.7132, 209.6983, 251.0456], [545.3470, 209.9055, 651.9860, 502.1882], ] ).to(torch_device) self.assertListEqual([len(result["scores"]) for result in results], [4, 4, 6]) torch.testing.assert_close( torch.stack([result["scores"][0] for result in results]), expected_scores, rtol=1e-2, atol=1e-2 ) torch.testing.assert_close( torch.stack([result["boxes"][0, :] for result in results]), expected_slice_boxes, rtol=1e-2, atol=1e-2 ) expected_text_labels = [ ["remote", "cat", "remote", "cat"], ["boat", "boat", "boat", "boat"], ["statue", "trees", "trees", "torch", "statue", "statue"], ] self.assertListEqual([result["text_labels"] for result in results], expected_text_labels) @require_torch_accelerator def test_inference_object_detection_head_equivalence_cpu_accelerator(self): processor = self.default_processor image = prepare_img() text_labels, task = prepare_text() encoding = processor(images=image, text=text_labels, task=task, return_tensors="pt") # 1. run model on CPU model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf") with torch.no_grad(): cpu_outputs = model(**encoding) # 2. run model on accelerator model.to(torch_device) encoding = encoding.to(torch_device) with torch.no_grad(): gpu_outputs = model(**encoding) # 3. assert equivalence expected_class_logits = torch.tensor([[[0.9427, -2.5958], [0.2105, -3.4569], [-2.6364, -4.1610]]]) expected_coord_logits = torch.tensor( [[[0.2550, 0.5501, 0.4738, 0.8745], [0.7695, 0.4121, 0.4603, 0.7244], [0.7691, 0.4117, 0.4603, 0.7214]]] ) torch.testing.assert_close( cpu_outputs.decoder_class_logits[:3, :3], expected_class_logits, rtol=1e-1, atol=1e-1 ) torch.testing.assert_close( cpu_outputs.decoder_coord_logits[:3, :3], expected_coord_logits, rtol=1e-3, atol=1e-3 ) # verify grounded postprocessing results_cpu = processor.post_process_grounded_object_detection( cpu_outputs, text_labels=[text_labels], target_sizes=[image.size[::-1]] )[0] result_gpu = processor.post_process_grounded_object_detection( gpu_outputs, text_labels=[text_labels], target_sizes=[image.size[::-1]] )[0] torch.testing.assert_close(results_cpu["scores"], result_gpu["scores"].cpu(), rtol=1e-2, atol=1e-2) torch.testing.assert_close(results_cpu["boxes"][0, :], result_gpu["boxes"][0, :].cpu(), rtol=1e-2, atol=1e-2)