transformers/docs/source/en/main_classes/quantization.md
Elvir Crnčević 845b0a2616
Efficient Inference Kernel for SpQR (#34976)
* Resolve vptq conflict

* Rename spqr package to spqr_quant

* Get rid of aqlm mention

* Start working on tests

* Resolve ruff code checks

* Ruff format

* Isort

* Test updates

* Add gpu tag

* Rename to modules_to_not_convert

* Config update

* Docs and config update

* Docs and config update

* Update to update_torch_dtype

* spqr config parameter validation

* Ruff update

* Apply ruff fixes

* Test fixes

* Ruff update

* Mark tests as @slow again; Ruff; Docstring update

* Ruff

* Remove absolute path

* Resolve typo

* Remove redundandt log

* Check accelerate/spqr availability

* Ruff fix

* Check if the config contains proper shapes

* Ruff test

* Documentation update

* overview update

* Ruff checks

* Ruff code quality

* Make style

* Update docs/source/en/quantization/spqr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update spqr.md

* Enable gptqmodel (#35012)

* gptqmodel

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update readme

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* gptqmodel need use checkpoint_format (#1)

* gptqmodel need use checkpoint_format

* fix quantize

* Update quantization_config.py

* Update quantization_config.py

* Update quantization_config.py

---------

Co-authored-by: ZX-ModelCloud <zx@modelcloud.ai>
Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai>

* Revert quantizer_gptq.py (#2)

* revert quantizer_gptq.py change

* pass **kwargs

* limit gptqmodel and optimum version

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix warning

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix version check

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* revert unrelated changes

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* enable gptqmodel tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix requires gptq

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* Fix Transformer compat (#3)

* revert quantizer_gptq.py change

* pass **kwargs

* add meta info

* cleanup

* cleanup

* Update quantization_config.py

* hf_select_quant_linear pass checkpoint_format and meta

* fix GPTQTestCUDA

* Update test_gptq.py

* gptqmodel.hf_select_quant_linear() now does not select ExllamaV2

* cleanup

* add backend

* cleanup

* cleanup

* no need check exllama version

* Update quantization_config.py

* lower checkpoint_format and backend

* check none

* cleanup

* Update quantization_config.py

* fix self.use_exllama == False

* spell

* fix unittest

* fix unittest

---------

Co-authored-by: LRL <lrl@lbx.dev>
Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format again

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update gptqmodel version (#6)

* update gptqmodel version

* update gptqmodel version

* fix unit test (#5)

* update gptqmodel version

* update gptqmodel version

* "not self.use_exllama" is not equivalent to "self.use_exllama==False"

* fix unittest

* update gptqmodel version

* backend is loading_attibutes (#7)

* fix format and tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix memory check

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix device mismatch

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix result check

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* Update src/transformers/quantizers/quantizer_gptq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/quantizers/quantizer_gptq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/quantizers/quantizer_gptq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* update tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* review: update docs (#10)

* review: update docs (#12)

* review: update docs

* fix typo

* update tests for gptqmodel

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update document (#9)

* update overview.md

* cleanup

* Update overview.md

* Update overview.md

* Update overview.md

* update gptq.md

* Update gptq.md

* Update gptq.md

* Update gptq.md

* Update gptq.md

* Update gptq.md

* Update gptq.md

---------

Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai>

* typo

* doc note for asymmetric quant

* typo with apple silicon(e)

* typo for marlin

* column name revert: review

* doc rocm support

* Update docs/source/en/quantization/gptq.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/gptq.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/gptq.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/gptq.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/overview.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/overview.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: LRL-ModelCloud <165116337+LRL-ModelCloud@users.noreply.github.com>
Co-authored-by: ZX-ModelCloud <zx@modelcloud.ai>
Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai>
Co-authored-by: ZX-ModelCloud <165115237+ZX-ModelCloud@users.noreply.github.com>
Co-authored-by: LRL <lrl@lbx.dev>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fix : Nemotron Processor in GGUF conversion (#35708)

* fixing nemotron processor

* make style

* Update docs/source/en/quantization/spqr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add missing TOC to doc

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: LRL-ModelCloud <165116337+LRL-ModelCloud@users.noreply.github.com>
Co-authored-by: ZX-ModelCloud <zx@modelcloud.ai>
Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai>
Co-authored-by: ZX-ModelCloud <165115237+ZX-ModelCloud@users.noreply.github.com>
Co-authored-by: LRL <lrl@lbx.dev>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-02-13 16:22:58 +01:00

2.0 KiB
Executable File

Quantization

Quantization techniques reduce memory and computational costs by representing weights and activations with lower-precision data types like 8-bit integers (int8). This enables loading larger models you normally wouldn't be able to fit into memory, and speeding up inference. Transformers supports the AWQ and GPTQ quantization algorithms and it supports 8-bit and 4-bit quantization with bitsandbytes.

Quantization techniques that aren't supported in Transformers can be added with the [HfQuantizer] class.

Learn how to quantize models in the Quantization guide.

QuantoConfig

autodoc QuantoConfig

AqlmConfig

autodoc AqlmConfig

VptqConfig

autodoc VptqConfig

AwqConfig

autodoc AwqConfig

EetqConfig

autodoc EetqConfig

GPTQConfig

autodoc GPTQConfig

BitsAndBytesConfig

autodoc BitsAndBytesConfig

HfQuantizer

autodoc quantizers.base.HfQuantizer

HiggsConfig

autodoc HiggsConfig

HqqConfig

autodoc HqqConfig

FbgemmFp8Config

autodoc FbgemmFp8Config

CompressedTensorsConfig

autodoc CompressedTensorsConfig

TorchAoConfig

autodoc TorchAoConfig

BitNetConfig

autodoc BitNetConfig

SpQRConfig

autodoc SpQRConfig

FineGrainedFP8Config

autodoc FineGrainedFP8Config