mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 13:50:13 +06:00

* Disable inductor config setter by default This is hard to debug and should be off by default * remove default settings in autoquant too * Add info to torchao.md about recommended settings * satisfying Ruff format Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: --------- Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
229 lines
11 KiB
Markdown
229 lines
11 KiB
Markdown
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
-->
|
|
|
|
# torchao
|
|
|
|
[torchao](https://github.com/pytorch/ao) is a PyTorch architecture optimization library with support for custom high performance data types, quantization, and sparsity. It is composable with native PyTorch features such as [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) for even faster inference and training.
|
|
|
|
Install torchao with the following command.
|
|
|
|
```bash
|
|
# Updating 🤗 Transformers to the latest version, as the example script below uses the new auto compilation
|
|
pip install --upgrade torch torchao transformers
|
|
```
|
|
|
|
torchao supports many quantization types for different data types (int4, float8, weight only, etc.).
|
|
Starting with version 0.10.0, torchao provides enhanced flexibility through the `AOBaseConfig` API, allowing for more customized quantization configurations.
|
|
And full access to the techniques offered in the torchao library.
|
|
|
|
You can manually choose the quantization types and settings or automatically select the quantization types.
|
|
|
|
<hfoptions id="torchao">
|
|
<hfoption id="manual">
|
|
|
|
|
|
Create a [`TorchAoConfig`] and specify the quantization type and `group_size` of the weights to quantize. Set the `cache_implementation` to `"static"` to automatically [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) the forward method.
|
|
|
|
> [!TIP]
|
|
> Run the quantized model on a CPU by changing `device_map` to `"cpu"` and `layout` to `Int4CPULayout()`. This is only available in torchao 0.8.0+.
|
|
|
|
In torchao 0.10.0+, you can use the more flexible `AOBaseConfig` approach instead of string identifiers:
|
|
|
|
```py
|
|
import torch
|
|
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
from torchao.quantization import Int4WeightOnlyConfig
|
|
|
|
# Using AOBaseConfig instance (torchao >= 0.10.0)
|
|
quant_config = Int4WeightOnlyConfig(group_size=128)
|
|
quantization_config = TorchAoConfig(quant_type=quant_config)
|
|
|
|
# Load and quantize the model
|
|
quantized_model = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Meta-Llama-3-8B",
|
|
torch_dtype="auto",
|
|
device_map="auto",
|
|
quantization_config=quantization_config
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
|
|
input_text = "What are we having for dinner?"
|
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
|
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
|
|
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
```
|
|
|
|
## Available Quantization Schemes
|
|
|
|
TorchAO provides a variety of quantization configurations:
|
|
|
|
- `Int4WeightOnlyConfig`
|
|
- `Int8WeightOnlyConfig`
|
|
- `Int8DynamicActivationInt8WeightConfig`
|
|
- `Float8WeightOnlyConfig`
|
|
|
|
Each configuration can be further customized with parameters such as `group_size`, `scheme`, and `layout` to optimize for specific hardware and model architectures.
|
|
|
|
For a complete list of available configurations, see our [quantization API documentation](https://github.com/pytorch/ao/blob/main/torchao/quantization/quant_api.py).
|
|
|
|
> **⚠️ DEPRECATION WARNING**
|
|
>
|
|
> Starting with version 0.10.0, the string-based API for quantization configuration (e.g., `TorchAoConfig("int4_weight_only", group_size=128)`) is **deprecated** and will be removed in a future release.
|
|
>
|
|
> Please use the new `AOBaseConfig`-based approach instead:
|
|
>
|
|
> ```python
|
|
> # Old way (deprecated)
|
|
> quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
|
>
|
|
> # New way (recommended)
|
|
> from torchao.quantization import Int4WeightOnlyConfig
|
|
> quant_config = Int4WeightOnlyConfig(group_size=128)
|
|
> quantization_config = TorchAoConfig(quant_type=quant_config)
|
|
> ```
|
|
>
|
|
> The new API offers greater flexibility, better type safety, and access to the full range of features available in torchao.
|
|
>
|
|
> ## Migration Guide
|
|
>
|
|
> Here's how to migrate from common string identifiers to their `AOBaseConfig` equivalents:
|
|
>
|
|
> | Old String API | New `AOBaseConfig` API |
|
|
> |----------------|------------------------|
|
|
> | `"int4_weight_only"` | `Int4WeightOnlyConfig()` |
|
|
> | `"int8_weight_only"` | `Int8WeightOnlyConfig()` |
|
|
> | `"int8_dynamic_activation_int8_weight"` | `Int8DynamicActivationInt8WeightConfig()` |
|
|
>
|
|
> All configuration objects accept parameters for customization (e.g., `group_size`, `scheme`, `layout`).
|
|
|
|
|
|
Below is the API for for torchao < `0.9.0`
|
|
|
|
```py
|
|
import torch
|
|
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
|
quantized_model = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Meta-Llama-3-8B",
|
|
torch_dtype="auto",
|
|
device_map="auto",
|
|
quantization_config=quantization_config
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
|
|
input_text = "What are we having for dinner?"
|
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
|
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
|
|
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
```
|
|
|
|
Run the code below to benchmark the quantized models performance.
|
|
|
|
```py
|
|
from torch._inductor.utils import do_bench_using_profiling
|
|
from typing import Callable
|
|
|
|
def benchmark_fn(func: Callable, *args, **kwargs) -> float:
|
|
"""Thin wrapper around do_bench_using_profiling"""
|
|
no_args = lambda: func(*args, **kwargs)
|
|
time = do_bench_using_profiling(no_args)
|
|
return time * 1e3
|
|
|
|
MAX_NEW_TOKENS = 1000
|
|
print("int4wo-128 model:", benchmark_fn(quantized_model.generate, **input_ids, max_new_tokens=MAX_NEW_TOKENS, cache_implementation="static"))
|
|
|
|
bf16_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16)
|
|
output = bf16_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static") # auto-compile
|
|
print("bf16 model:", benchmark_fn(bf16_model.generate, **input_ids, max_new_tokens=MAX_NEW_TOKENS, cache_implementation="static"))
|
|
```
|
|
|
|
> [!TIP]
|
|
> For best performance, you can use recommended settings by calling `torchao.quantization.utils.recommended_inductor_config_setter()`
|
|
|
|
</hfoption>
|
|
<hfoption id="automatic">
|
|
|
|
The [autoquant](https://pytorch.org/ao/stable/generated/torchao.quantization.autoquant.html#torchao.quantization.autoquant) API automatically chooses a quantization type for quantizable layers (`nn.Linear`) by micro-benchmarking on input type and shape and compiling a single linear layer.
|
|
|
|
Create a [`TorchAoConfig`] and set to `"autoquant"`. Set the `cache_implementation` to `"static"` to automatically [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) the forward method. Finally, call `finalize_autoquant` on the quantized model to finalize the quantization and log the input shapes.
|
|
|
|
> [!TIP]
|
|
> Run the quantized model on a CPU by changing `device_map` to `"cpu"` and `layout` to `Int4CPULayout()`. This is only available in torchao 0.8.0+.
|
|
|
|
```py
|
|
import torch
|
|
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
quantization_config = TorchAoConfig("autoquant", min_sqnr=None)
|
|
quantized_model = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Meta-Llama-3-8B",
|
|
torch_dtype="auto",
|
|
device_map="auto",
|
|
quantization_config=quantization_config
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
|
|
input_text = "What are we having for dinner?"
|
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
|
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
|
|
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
|
|
# explicitly call `finalize_autoquant` (may be refactored and removed in the future)
|
|
quantized_model.finalize_autoquant()
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
```
|
|
|
|
Run the code below to benchmark the quantized models performance.
|
|
|
|
```py
|
|
from torch._inductor.utils import do_bench_using_profiling
|
|
from typing import Callable
|
|
|
|
def benchmark_fn(func: Callable, *args, **kwargs) -> float:
|
|
"""Thin wrapper around do_bench_using_profiling"""
|
|
no_args = lambda: func(*args, **kwargs)
|
|
time = do_bench_using_profiling(no_args)
|
|
return time * 1e3
|
|
|
|
MAX_NEW_TOKENS = 1000
|
|
print("autoquantized model:", benchmark_fn(quantized_model.generate, **input_ids, max_new_tokens=MAX_NEW_TOKENS, cache_implementation="static"))
|
|
|
|
bf16_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16)
|
|
output = bf16_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static") # auto-compile
|
|
print("bf16 model:", benchmark_fn(bf16_model.generate, **input_ids, max_new_tokens=MAX_NEW_TOKENS, cache_implementation="static"))
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
## Serialization
|
|
|
|
torchao implements [torch.Tensor subclasses](https://pytorch.org/docs/stable/notes/extending.html#subclassing-torch-tensor) for maximum flexibility in supporting new quantized torch.Tensor formats. [Safetensors](https://huggingface.co/docs/safetensors/en/index) serialization and deserialization does not work with torchao.
|
|
|
|
To avoid arbitrary user code execution, torchao sets `weights_only=True` in [torch.load](https://pytorch.org/docs/stable/generated/torch.load.html) to ensure only tensors are loaded. Any known user functions can be whitelisted with [add_safe_globals](https://pytorch.org/docs/stable/notes/serialization.html#torch.serialization.add_safe_globals).
|
|
|
|
```py
|
|
# don't serialize model with Safetensors
|
|
output_dir = "llama3-8b-int4wo-128"
|
|
quantized_model.save_pretrained("llama3-8b-int4wo-128", safe_serialization=False)
|
|
```
|
|
|
|
## Resources
|
|
|
|
For a better sense of expected performance, view the [benchmarks](https://github.com/pytorch/ao/tree/main/torchao/quantization#benchmarks) for various models with CUDA and XPU backends.
|
|
|
|
Refer to [Other Available Quantization Techniques](https://github.com/pytorch/ao/tree/main/torchao/quantization#other-available-quantization-techniques) for more examples and documentation.
|