3.9 KiB
AIMv2
Overview
The AIMv2 model was proposed in Multimodal Autoregressive Pre-training of Large Vision Encoders by Enrico Fini, Mustafa Shukor, Xiujun Li, Philipp Dufter, Michal Klein, David Haldimann, Sai Aitharaju, Victor Guilherme Turrisi da Costa, Louis Béthune, Zhe Gan, Alexander T Toshev, Marcin Eichner, Moin Nabi, Yinfei Yang, Joshua M. Susskind, Alaaeldin El-Nouby.
The abstract from the paper is the following:
We introduce a novel method for pre-training of large-scale vision encoders. Building on recent advancements in autoregressive pre-training of vision models, we extend this framework to a multimodal setting, i.e., images and text. In this paper, we present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process, scalability, and remarkable performance across a range of downstream tasks. This is achieved by pairing the vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification. Notably, our AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk. Furthermore, AIMV2 consistently outperforms state-of-the-art contrastive models (e.g., CLIP, SigLIP) in multimodal image understanding across diverse settings.
This model was contributed by Yaswanth Gali. The original code can be found here.
Usage Example
Here is an example of Image Feature Extraction using specific checkpoints on resized images and native resolution images:
import requests
from PIL import Image
from transformers import AutoImageProcessor, AutoModel
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("apple/aimv2-large-patch14-native")
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-native")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
Here is an example of a checkpoint performing zero-shot classification:
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
text = ["Picture of a dog.", "Picture of a cat.", "Picture of a horse."]
processor = AutoProcessor.from_pretrained("apple/aimv2-large-patch14-224-lit")
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-224-lit")
inputs = processor(
images=image,
text=text,
add_special_tokens=True,
truncation=True,
padding=True,
return_tensors="pt",
)
outputs = model(**inputs)
probs = outputs.logits_per_image.softmax(dim=-1)
Aimv2Config
autodoc Aimv2Config
Aimv2TextConfig
autodoc Aimv2TextConfig
Aimv2VisionConfig
autodoc Aimv2VisionConfig
Aimv2Model
autodoc Aimv2Model - forward
Aimv2VisionModel
autodoc Aimv2VisionModel - forward
Aimv2TextModel
autodoc Aimv2TextModel - forward