
* [Mistral] Mistral-7B-v0.1 support * fixing names * slightly longer test * fixups * not_doctested * wrongly formatted references * make fixuped --------- Co-authored-by: Timothee Lacroix <t@eugen.ai> Co-authored-by: timlacroix <t@mistral.ai>
4.1 KiB
Mistral
Overview
Mistral-7B-v0.1 is Mistral AI’s first Large Language Model (LLM).
Model Details
Mistral-7B-v0.1 is a decoder-based LM with the following architectural choices:
- Sliding Window Attention - Trained with 8k context length and fixed cache size, with a theoretical attention span of 128K tokens
- GQA (Grouped Query Attention) - allowing faster inference and lower cache size.
- Byte-fallback BPE tokenizer - ensures that characters are never mapped to out of vocabulary tokens.
We also provide an instruction fine-tuned model: Mistral-7B-Instruct-v0.1
which can be used for chat-based inference.
For more details please read our release blog post
License
Both Mistral-7B-v0.1
and Mistral-7B-Instruct-v0.1
are released under the Apache 2.0 license.
Usage
Mistral-7B-v0.1
and Mistral-7B-Instruct-v0.1
can be found on the Huggingface Hub
These ready-to-use checkpoints can be downloaded and used via the HuggingFace Hub:
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> prompt = "My favourite condiment is"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"The expected outupt"
Raw weights for Mistral-7B-v0.1
and Mistral-7B-Instruct-v0.1
can be downloaded from:
Model Name | Checkpoint |
---|---|
Mistral-7B-v0.1 |
Raw Checkpoint |
Mistral-7B-Instruct-v0.1 |
Raw Checkpoint |
To use these raw checkpoints with HuggingFace you can use the convert_mistral_weights_to_hf.py
script to convert them to the HuggingFace format:
python src/transformers/models/mistral/convert_mistral_weights_to_hf.py \
--input_dir /path/to/downloaded/mistral/weights --model_size 7B --output_dir /output/path
You can then load the converted model from the output/path
:
from transformers import MistralForCausalLM, LlamaTokenzier
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
model = MistralForCausalLM.from_pretrained("/output/path")
The Mistral Team
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
MistralConfig
autodoc MistralConfig
MistralModel
autodoc MistralModel - forward
MistralForCausalLM
autodoc MistralForCausalLM - forward
MistralForSequenceClassification
autodoc MistralForSequenceClassification - forward