mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 14:50:07 +06:00
148 lines
4.8 KiB
Python
148 lines
4.8 KiB
Python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch dots1 model."""
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import AutoTokenizer, Dots1Config, is_torch_available
|
|
from transformers.testing_utils import (
|
|
backend_empty_cache,
|
|
cleanup,
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
require_torch_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
Dots1ForCausalLM,
|
|
Dots1Model,
|
|
)
|
|
|
|
|
|
class Dots1ModelTester(CausalLMModelTester):
|
|
config_class = Dots1Config
|
|
if is_torch_available():
|
|
base_model_class = Dots1Model
|
|
causal_lm_class = Dots1ForCausalLM
|
|
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
n_routed_experts=8,
|
|
n_shared_experts=1,
|
|
n_group=1,
|
|
topk_group=1,
|
|
num_experts_per_tok=8,
|
|
):
|
|
super().__init__(parent=parent, num_experts_per_tok=num_experts_per_tok)
|
|
self.n_routed_experts = n_routed_experts
|
|
self.n_shared_experts = n_shared_experts
|
|
self.n_group = n_group
|
|
self.topk_group = topk_group
|
|
|
|
|
|
@require_torch
|
|
class Dots1ModelTest(CausalLMModelTest, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
Dots1Model,
|
|
Dots1ForCausalLM,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": Dots1Model,
|
|
"text-generation": Dots1ForCausalLM,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
model_tester_class = Dots1ModelTester
|
|
|
|
@unittest.skip("dots.llm1's moe is not compatible `token_indices, weight_indices = torch.where(mask)`.")
|
|
def test_generate_with_static_cache(self):
|
|
pass
|
|
|
|
@unittest.skip("dots.llm1's moe is not compatible `token_indices, weight_indices = torch.where(mask)`.")
|
|
def test_generate_compilation_all_outputs(self):
|
|
pass
|
|
|
|
@unittest.skip("dots.llm1's moe is not compatible `token_indices, weight_indices = torch.where(mask)`")
|
|
def test_generate_compile_model_forward(self):
|
|
pass
|
|
|
|
@unittest.skip("dots.llm1's moe is not compatible token_indices, weight_indices = torch.where(mask).")
|
|
def test_generate_from_inputs_embeds_with_static_cache(self):
|
|
pass
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
self.skipTest(reason="dots.llm1 flash attention does not support right padding")
|
|
|
|
|
|
@require_torch_accelerator
|
|
class Dots1IntegrationTest(unittest.TestCase):
|
|
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
|
|
# Depending on the hardware we get different logits / generations
|
|
cuda_compute_capability_major_version = None
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
if is_torch_available() and torch.cuda.is_available():
|
|
# 8 is for A100 / A10 and 7 for T4
|
|
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
|
|
|
|
def tearDown(self):
|
|
# See LlamaIntegrationTest.tearDown(). Can be removed once LlamaIntegrationTest.tearDown() is removed.
|
|
cleanup(torch_device, gc_collect=False)
|
|
|
|
@slow
|
|
def test_model_15b_a2b_generation(self):
|
|
EXPECTED_TEXT_COMPLETION = (
|
|
"""To be or not to be, that is the question:\nWhether 'tis nobler in the mind to suffer\nThe"""
|
|
)
|
|
prompt = "To be or not to"
|
|
tokenizer = AutoTokenizer.from_pretrained("redmoe-ai-v1/dots.llm1.test", use_fast=False)
|
|
model = Dots1ForCausalLM.from_pretrained("redmoe-ai-v1/dots.llm1.test", device_map="auto")
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(input_ids, max_new_tokens=20, do_sample=False)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
del model
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|